Skip to main content Accessibility help

Thermal Stability of GaN Investigated by Raman Scattering

  • M. Kuball (a1), F. Demangeot (a2), J. Frandon (a2), M.A. Renucci (a2), N. Grandjean (a3) and O. Briot (a4)...


We have investigated the thermal stability of GaN using Raman scattering. Noninvasive optical monitoring of the degradation of GaN during high-temperature processing has been demonstrated. GaN samples grown by molecular-beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOCVD) were studied. Characteristic features in the Raman spectrum identify three thermal stability regimes: (1) annealing below 900°C does not affect the GaN Raman spectrum; (2) annealing between 900°C and 1000°C results in the appearance of disorder-induced Raman scattering between the E2 and A1(LO) phonon; (3) annealing at temperatures higher than 1000°C gives rise to distinct Raman modes at 630 cm-1, 656 cm-1 and 770 cm-1. The evolution of the Raman spectrum of GaN with increasing annealing temperature is discussed in terms of disorder-induced Raman scattering. We find clear indications for an interfacial reaction between GaN and sapphire for annealing temperatures higher than 1000°C.



Hide All
[1] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, K., Appl. Phys. Lett. 72, 211 (1998).
[2] Song, Y.-K., Kuball, M., Nurmikko, A.V., Bulman, G.E., Doverspike, K., Shappard, S.T., Weeks, T.W., Leonard, M., Kong, H.S., Dieringer, H., and Edmonds, J., Appl. Phys. Lett. 72, 1418 (1998).
[3] Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).
[4] Khan, M.A., Chen, Q., Skogman, R.A., and Kuznia, J.N., Appl. Phys. Lett. 66, 2046 (1995).
[5] Kuball, M., Demangeot, F., Frandon, J., Renucci, M.A., Massies, J., Grandjean, N., Aulombard, R.L., and Briot, O., Appl. Phys. Lett. 73, 960 (1998).
[6] Zolper, J.C., Crawford, M. Hagerott, Howard, A.J., Ramer, J., and Hersee, S.D., Appl. Phys. Lett. 68, 200 (1996).
[7] Hong, J., Lee, J.W., MacKenzie, J.D., Donovan, S.M., Abernathy, C.R., Pearton, S.J., and Zolper, J.C., Semicond. Sci. Technol. 12, 1310 (1997).
[8] Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A.P., Hoffmann, A., and Thomsen, C., Phys. Rev. B 55, 7000 (1997).
[9] Azuhata, T., Matsunaga, T., Shimada, K., Yoshida, K., Sota, T., Suzuki, K., and Nakamura, S., Physica B 219&220, 493 (1996).
[10] Lin, M.E., Sverdiov, B.N., and Morkoç, H., Appl. Phys. Lett. 63, 3625 (1993).
[11] Demangeot, F., Frandon, J., Renucci, M.A., Briot, O., Gil, B., Aulombard, R.-L., MRS Internet J. Nitride Semicond. Res. 1, 23 (1996).
[12] Barker, A. S. Jr, Phys. Rev. 132, 1474 (1963).
[13] Grabner, L., J. Appl. Phys. 49, 580 (1978).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed