Skip to main content Accessibility help

Thermal Plasma Synthesis of γ-FeN, Nanoparticles as Precursors for the Fe16N2 Synthesis by Annealing

  • Z. Turgut (a1), D. E. Ferguson (a2), M. Q. Huang (a3), W. E. Wallace (a3) and M. E. Mchenry (a1)...


An ordered Fe16N2 phase has been reported with iron moments as high as 3.2 μB. It is precipitated from nitrogen martensite structures ideally containing 10.5 at.% nitrogen. Due to the highly distorted crystal structure and metastability of this phase non-equilibrium processing routes are sought to synthesize this phase. Here we report on radio frequency (RF) plasma torch synthesis which is used to produce FeN. nanoparticles quenched into a body centered tetragonal bct) structure as precursors for further annealing studies to form α“- Fe16N2 phase. We have employed a Tekna PL-50 type 50 kW, RF plasma torch. A plasma gas mixture containing 40 standard liters per minute (slpm) Ar and 8 slpm Hydrogen - 70 slpm Ar gas was used as a sheath gas. Iron powder ( < 10 μm) was injected into the plasma stream using Ar flowing 15 slpm as a carrier gas. Nitrogen and Ammonia were used as a nitrogenization sources. Relatively low injection rates were used in order to achieve smaller particle sizes and thus faster quenching rates. We were able to produce particles containing up to 45 % of the quenched γ-phase. Observations based on x-ray diffraction (XRD) determination of lattice expansion and phase transition temperatures observed by differential thermal analysis (DTA) indicated that the quenched phase contains 6.5 atomic % nitrogen. Scherrer analysis of the fine particle broadening indicated that the average particle size for γ- phase is 27 nm, whereas this value is found to be 55 nm. for α-Fe. Nitrogen is well known for its grain size refinement in Fe thin films. Saturation magnetizations were found to be as low as 123 emu/g due to the presence of the nonmagnetic γ-FeNx phase.



Hide All
1. Jack, K. H., J. Appl. Phys. 76, 6620 (1994); Proc. R. Soc. London, Ser. A 208, 216 (1951).
2. Kim, T. K. and Takahashi, M., Appl. Phys. Lett. 20 492 (1972).
3. Sugita, Y., Mitsuoka, K., Komuro, M., Hoshiya, H., Kozono, Y. and Hanazono, M., J. Appl. Phys. 70, 5977 (1991).
4. Bezdicka, P., Klarikova, A., Paseka, I. and Zaveta, K., J. Alloys Comps. 274 10 (1998).
5. Coey, J. M., O'Donnell, K., Qinian, Q., Touchais, E. and Jack, K. H., J. Phys.: Condens. Matter 6, L23 (1994).
6. Weber, T., Wit, L. de, Saris, F. W. and Schaff, P., Thin solid Films 279, 216 (1996).
7. Metzger, R. M., Bao, X. and Carbucicchio, M., J. Appl. Phys. 76, 6626 (1994).
8. Jack, K. H., J. Appl. Phys. 76, 6620 (1994).
9. Sakuma, A., J. Magn. Magn. Mater. 102, 127 (1991).
10. Min, B. I., Phys. Rev. B 46, 8232 (1992).
11. Coehoorn, R., Daalderop, G. H. O. and Jansen, H. J. F., Phys. Rev. B 48, 3830 (1993).
12. Umino, K., Nakajima, H. and Shiiki, K., J. Magn. Magn. Mater. 153, 323 (1996).
13. Nakajima, H., Ohashi, Y. and Shiiki, K., J. Magn. Magn. Mater. 167, 259 (1997).
14. Ishida, S., Kitawatase, K., Fujii, S. and Asano, S., J. Phys. Condens. Matter 4, 765 (1992).
15. Sugita, Y., Takahashi, H., Komuro, M., Mitsuoka, K. and Sakuma, A., J. Appl. Phys. 76, 6637 (1994).
16. Sun, D. C., Jiang, E. Y. and Sun, D., Thin solid Films 298, 116 (1997).
17. Nakajima, K., Okamoto, S. and Okada, T., J. Appl. Phys. 65, 4357 (1989).
18. Takahashi, M., Shoji, H., Takahashi, H., Wakiyama, T., Dio, M. and Matsiu, M., J. Appl. Phys. 76, 6642 (1994).
19. Coey, J. M. D., J. Appl. Phys. 76, 6632 (1994).
20. Huang, M. Q., Wallace, W. E., Simizu, S. and Sankar, S. G., J. Magn. Magn. Mater. 135, 226 (1994).
21. Wallace, W. E. and Huang, M. Q., J. Appl. Phys. 76, 6648 (1994).
22. Genderen, M. J. van, Bottger, A., Cernik, R. J. and Mittemeier, E. J., Metall. Trans. A 21A, 1965 (1993).
23. Genderen, M. J. Van, Bottger, A. and Mittemeijer, E. J., Metall. Trans A 28A, 63 (1997).
24. Wriedth, H. A., Gogcen, N. A. and Nofzinger, R. H., Bull. Alloy Phase Diagrams 8, 355 (1987)
25. Kano, A., Kazama, N. S. and Fujimori, H., J. Appl. Phys. 53, 8332 (1982).
26. Peng, D-L., Sumiyama, K. and Suzuki, K, J. Alloys Comps. 259,1 (1997).

Thermal Plasma Synthesis of γ-FeN, Nanoparticles as Precursors for the Fe16N2 Synthesis by Annealing

  • Z. Turgut (a1), D. E. Ferguson (a2), M. Q. Huang (a3), W. E. Wallace (a3) and M. E. Mchenry (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.