Skip to main content Accessibility help

Thermal Interdiffusion in InGaAs/GaAs Strained Multiple Quantum Well Infrared Photodetector

  • Alex S. W. Lee (a1), E. Herbert Li (a1) and Gamani Karunasiri (a2)


RTA at 850 °C for 5 and 10 s is carried out to study the effect of interdiffusion on the optical and electrical properties of strained InGaAs/GaAs quantum well infrared photodetector. Photoluminescence measurement at 4.5 K shows that no strain relaxation or misfit dislocation formation occurs throughout the annealing process. Absorption and responsivity peak wavelengths are red shifted continuously without appreciable degradation in absorption strength. The normal incident absorption, which is believed to be the result of band-mixing effects induced by the coupling between the conduction and valence and is usually forbidden in conventional polarization selection rule, is preserved after interdiffusion. Responsivity spectra of both 0° and 90° polarization are of compatible amplitude and the shape of the annealed spectra becomes narrower. Dark current of the annealed devices is not very sensitive to temperature variation and is found to be an order of magnitude larger than the as-grown one at 77K.



Hide All
1. Levine, B. F., Zussman, A., Gunapala, S. D., Asom, M. T., Kuo, J. M., and Hobson, W. S., J. Appl. Phys. Lett. 72, 4429 (1992)
2. West, L. C., English, S. J., Appl. Phys. Lett. 46, 1156 (1985).
3. Karunasiri, R. P. G., Park, J. S., Chen, J., and Shih, R., Appl. Phys. Lett. 67, 2600 (1995).
4. Matthews, J. W. and Blakeskee, A. E., J. Cryst. Growth 27, 118 (1974).
5. Bürkner, S., Ralston, J. D., Weisser, S., Rosenzweig, J., Larkins, E. C., Sah, R. E., and Fleißner, J., IEEE Photon. Technol. Lett. 7, 941 (1995).
6. Ralston, J. D., Ramsteiner, M., Discher, B., Maier, M., Brandt, G., Koidl, P., and As, D. J., J. Appl. Phys. 70, 2195 (1991).
7. Steele, A. G., Buchanan, M., Liu, H. C., and Wasilewski., Z. R., J. Appl. Phys. 75, 8234 (1994).
8. Elman, B., Koteles, E. S., Melman, P., Jagannath, C., Armiento, C. A., and Rothman, M., J. Appl. Phys. 68, 1351 (1990).
9. Burker, S., Baeumler, M., Wanger, J., Larkins, E. C., Rothemund, W., and Ralston, J. D., J. Appl. Phys. 79, 6818 (1996).
10. Deppe, D. G. and Holonyak, N., Jr., “Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64, R93 (1988).
11. Bandara, K. M. S. V., Levine, B. F., and Asom, M. T., J. Appl. Phys. 74, 346 (1993).
12. Choi, K. K, Taysing-Lara, M., Newman, P. G., and Chang, W., “Wavelength tuning and absorption line shape of quantum well infrared photodetectors.Appl. Phys. Lett. 61, 1781 (1992).
13. Peng, L. H. and Fonstad, C. G., “Multiple coupling effects on electron quantum well intersubband Transitions,” J. Appl. Phys. 77, 747 (1995).
14. Lee, A. S. W. and Li, E. H., “Effects of interdiffusion of quantum well infrared photodetector,” Appl. Phys. Lett. 69, 3581 (1996).
15. Liu, H. C., Wasilewski, Z.R., Buchanan, M., and Chu, Hanyou, Appl. Phys. Lett. 63, 761 (1993).

Related content

Powered by UNSILO

Thermal Interdiffusion in InGaAs/GaAs Strained Multiple Quantum Well Infrared Photodetector

  • Alex S. W. Lee (a1), E. Herbert Li (a1) and Gamani Karunasiri (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.