Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T08:46:00.498Z Has data issue: false hasContentIssue false

Thermal Expansion of Glass-Forming Zr-based Alloys in the Melt, the Undercooled Liquid and the Different Solid States

Published online by Cambridge University Press:  17 March 2011

K. Samwer
Affiliation:
Univ. Göttingen, I. Physikalisches Institut, Göttingen, Germany
B. Damaschke
Affiliation:
Univ. Göttingen, I. Physikalisches Institut, Göttingen, Germany
M. Krause
Affiliation:
Univ. Bremen, Institut für Festkörperphysik, Bremen, Germany
P. Ryder
Affiliation:
Univ. Bremen, Institut für Festkörperphysik, Bremen, Germany
Get access

Abstract

The thermal expansion coefficients of glass-forming Zr-based alloys were measured in the melt, the undercooled liquid and the glassy/crystalline state. Due to the high reactivity of the liquid material the experiments were performed containerlessly in an electrostatic levitator. We used an optical method where the samples were imaged with a high-resolution CCD- camera and the volume of the samples was evaluated by digital image processing. The coefficients of thermal expansion in the liquid and in the solid state could be determined from the volume versus temperature curves. The results can be compared with measurements in the electromagnetic levitation facility TEMPUS performed under microgravity conditions in the mission MSL-1 and ground based DMA-measurements. The thermal expansion data can be interpreted in terms of the free volume model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zhang, T., Inoue, A., Masumoto, T., Mater. Trans. JIM 32, 1005 (1991)Google Scholar
[2] Peker, A., Johnson, W.L., Appl. Phys. Lett 63, 2342 (1993)Google Scholar
[3] Cohen, M.H. and Grest, G.S., Phys. Rev. B 20, 1077 (1979)Google Scholar
[4] Beukel, A. van den and Sietsma, J., Acta metall. mater. 38, 383 (1990)Google Scholar
[5] Götze, W., in Liquids, Freezing and the Glass Transition, ed. Hansen, J.P., Levesque, D., and Zinn-Justin, J. (North-Holland, Amsterdam, 1989), Vol. I, p. 287 Google Scholar
[6] Lohöfer, G., Neuhaus, P. and Egry, I., High Temp.-High Press. 23, 333 (1991)Google Scholar
[7] Egry, I., J. Jpn. Microgravity Appl. 15, 215 (1998)Google Scholar
[8] Damaschke, B., Oelgeschlaeger, D., Ehrich, J., Dietzsch, E. and Samwer, K., Rev. Sci. Instrum. 69, 2110 (1998)Google Scholar
[9] Damaschke, B. and Samwer, K., Appl. Phys. Lett. 75, 2220 (1999)Google Scholar
[10] Rhim, W.-K., Chung, S. K., Barber, D., Man, K. F., Gutt, G., Rulison, A., and Spjut, R. E., Rev. Sci. Instrum. 64, 2961 (1993)Google Scholar
[11] Elliott, S.R., Physics of amorphous materials, 2nd ed., Longman Group (FE) Limited, Hong Kong 1990 Google Scholar
[12] Geier, N., Weiβ, M., Moske, M. and Samwer, K., Eur. Phys. J. B 13, 37 (2000)Google Scholar
[13] Reinker, B., Dopfer, M., Moske, M., and Samwer, K., Eur. Phys. J. B 7, 359 (1999)Google Scholar
[14] Masuhr, A., Waniuk, T.A., Busch, R., and Johnson, W.L., Phys. Rev. Lett. 82, 2290 (1999)Google Scholar
[15] Kaspers, W., Pott, R., Herlach, D.M., Löhneysen, H.v., Phys. Rev. Lett. 50, 433 (1983)Google Scholar
[16] Herlach, D.M., Gronert, H.W. and Wassermann, E.F., Europhys. Lett. 1, 23 (1986)Google Scholar
[17] Ohsaka, K., Chung, S.K., Rhim, W.K., Peker, A., Scruggs, D., and Johnson, W.L., Appl. Phys. Lett. 70, 726 (1997)Google Scholar
[18] He, Y., Schwarz, R.B., Mandrus, D. and Jacobson, L., J. Non Cryst. Solids 205–207, 602 (1996)Google Scholar
[19] Chua, L.F., Yuen, C.W., and Kui, H.W., Appl. Phys. Lett. 67, 614 (1995)Google Scholar