Skip to main content Accessibility help

Thermal Conductiviy of type I and II Clathrate Compounds

  • G.S. Nolas (a1), J.L. Cohn (a2), M. Kaeser (a3) and T.M. Tritt (a3)


Compounds with clathrate-hydrate type crystal lattice structures are currently of interest in thermoelectric materials research. This is due to the fact that semiconducting compounds can be synthesized with varying doping levels while possessing low, even ‘glass-like’, thermal conductivity. Up to now most of the work has focused on type I Si and Ge clathrates. Sn-clathrates however are viewed as having the greatest potential for thermoelectric cooling applications due to the larger mass of Sn and the expected small band-gap, as compared to Si and Ge clathrates. Transport properties on type I Sn-clathrates has only recently been reported [1–3]. In this report we present ongoing experimental research on both type I and II clathrates with an emphasis on the thermal transport of these novel materials. We present thermal conductivity data Si-Ge and Ge-Sn alloys as well as on a type II Ge clathrate for the first time, and compare these data to that of other clathrate compounds.



Hide All
1. Nolas, G.S., Weakley, T.J.R. and Cohn, J. L., Chem. Mater. 11, 2470 (1999).
2. Nolas, G.S., Chakoumakos, B.C., Mahieu, B., Long, G.J. and Weakley, T.J.R., Chem. Mat., in press.
3. Nolas, G.S., Cohn, J.L. and Nelson, E., Proceedings of the Nineteenth International Conference on Thermoelectrics, in press.
4. Slack, G.A., in Thermoelectric Materials -- New Directions and Approaches, edited by Tritt, T.M., Kanatzidis, M.G., Lyon, H.B. Jr, and Mahan, G.D. (Mat. Res. Soc. Symp. Proc. Vol. 478, Pittsburgh, PA, 1997) p. 47.
5. Nolas, G.S., Morelli, D.T. and Tritt, T.M., Annu. Rev. Mater. Sci. 29, 89 (1999).
6. Nolas, G. S., Cohn, J. L., Slack, G. A. and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).
7. Cohn, J.L., Nolas, G.S., Fessatidis, V., Metcalf, T.H. and Slack, G.A., Phys. Rev. Lett. 82, 779 (1999).
8. Chakoumakos, B. C., Sales, B. C., Mandrus, D. G. and Nolas, G. S., J. Alloys and Comp. 296, 801 (1999).
9. Nolas, G.S., Mater. Res. Soc. Symp. Proc. Vol. 545, Pittsburgh, PA 1999) p 435.
10. Iverson, B.B., Palmqvist, A.E.C., Cox, D.E., Nolas, G.S., Stucky, G.D., Blake, N.P. and Metiu, H., J. Solid State Chem 149, 455 (1999).
11. Nolas, G.S., Weakley, T.J.R., Cohn, J.L. and Sharma, R., Phys. Rev. B 61, 3845 (2000).
12. Schujman, S.B., Nolas, G. S., Young, R. A., Lind, C., Wilkinson, A. P., Slack, G. A., Patschke, R., Kanatzidis, M. G., Ulutagay, M., Hwu, S. -J., J. of App. Phys. 87, 1529 (2000).
13. See for example, Franks, F., Water, A Comprehensive Treatise (Plenum Press, New York, 1973).
14. Demkov, A.A., Windl, W. and Sankey, O.F., Phys. Rev. B 53, 11288 (1996) and references therein.
15. Cross, C., Pouchard, M. and Hagenmuller, P., C.R. Acad. Sc. Paris 260, 4764 (1965).
16. Nolas, G. S. and Cohn, J.L., unpublished.
17. Bobev, S. and Sevov, S.C., J. Am. Chem. Soc. 121, 3795 (1999).

Thermal Conductiviy of type I and II Clathrate Compounds

  • G.S. Nolas (a1), J.L. Cohn (a2), M. Kaeser (a3) and T.M. Tritt (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.