Published online by Cambridge University Press: 21 February 2011
A mixture of bentonite clay and quartz sand is being considered for use as a waste-package backfill, the material placed between a radioactive-waste canister and the repository host rock. Compacts of bentonite/quartz with weight-percent ratios of 100/0, 70/30, 50/50 and 30/70 were made at room temperature under a pressure of 100 MPa (15 ksi). Upon initial heating, the thermal conductivity of the 70/30 compact rose from 1.20 W/m·K at 298 K to 1.32 W/m·K at 373 K. After further heating to 473 K, it fell to 1.10 W/m·K, reflecting the loss of interlamellar water from the bentonite. The conductivity of the now-dehydrated compact was reproducible through several heating and cooling cycles, varying from 1.15 W/m·K at 573 K to 1.03 W/m·K at 298 K. The other mixtures were qualitatively similar to the 70/30: the 100/0, 50/50 and 30/70 dehydrated compacts displayed conductivities of 0.59, 1.06 and 0.83 W/m.K,respectively, at 298 K. Measured densities ranged from 1.98 to 2.12 g/cc. Combined geometric-mean and Maxwell models for thermal conduction in composite systems predict the measured results reasonably well. An analysis of the impact of backfills on high-level waste (HLW) package design indicates that no significant thermal penalty is imposed.
This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under contract DE-AC04-76-DP00789.