Skip to main content Accessibility help
×
Home

Thermal Conductivity and Heat Transfer in Superlattices

  • G. Chen (a1), M. Neagu (a1) and T. Borca-Tasciuc (a1)

Abstract

Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

Copyright

References

Hide All
[1] Hicks, L.D., and Dresselhaus, M.S., Phy. Rev. B, 47, p. 1272712731 (1993).
[2] Yao, T., Appl. Phys. Lett., 51, p. 17981800 (1987).
[3] Chen, G., Tien, C.L., Wu, X., and Smith, J.S., J. Heat Transf. 116, p. 325331 (1994).
[4] Yu, X.Y., Chen, G., Verma, A., and Smith, J.S., Appl. Phys. Lett., 67, p. 35533556 (1995).
[5] Capsinski, W.S. and Maris, H.J., Physica B, 219&220, p. 699701 (1996).
[6] Lee, S.-M., Cahill, D., and Venkatasubramanian, R., private communication (1997).
[7] Venkatasubramanian, R., Naval Research News, XLVIII, 3143 (1996).
[8] Ren, S.Y. and Dow, J.D., Phys. Rev. B, 25, p. 37503755 (1982).
[9] Callaway, J., Phys. Rev., 113, p. 10461051 (1959).
[10] Chen, G., in ASME Proc. 31st National Heat Transf. Conf., HTD-323, p. 121129 (1996), more details to appear in J. Heat Transf..
[11] Chen, G., in Micro-Electro-Mechanical-Systems (Proc. ASME Int. Mech. Eng. Congress), DSC-59, p. 1324 (1996).
[12] Hyldgaard, P. and Mahan, G.D., in Thermal Conductivity 23, edited by Wilkes, K.E., Dinwiddie, R.B., and Graves, R.S. Technomic Publishing Co., Inc., 1996, p. 172182.
[13] Majumdar, A., J. Heat Transf., 115, p. 716 (1993).
[14] Chen, G. and Tien, C.L., J. Thermophys. Heat Transf., 7, p. 311318 (1993).
[15] Little, W.A., Can. J. Phys., 37, p. 334349 (1959).
[16] Holland, M.G., Phys. Rev., A, 134, p. 471480 (1964).
[17] Curruthers, P., Rev. Mod. Phys., 33, p. 92138 (1961).
[18] Swartz, E.T. and Pohl, R.O., Rev. Mod. Phys., 61, p. 605668 (1989).
[19] Bode, M.H. and Ourmazd, A., J. Vac. Sci. Techn., B, 10, p. 17871792 (1992).
[20] LeGoues, F.K., Meyerson, B.S., Morar, J.F., and Kirehner, P.D., J. Appl. Phys., 71, p. 42304243 (1992).
[21] Zheng, X.Y., Li, S.Z., Chen, M., and Wang, K.L., in Micro-Electro-Mechanical-Systems (Proc. ASME Int. Mech. Eng. Congress), DSC-59, p. 9398 (1996).

Thermal Conductivity and Heat Transfer in Superlattices

  • G. Chen (a1), M. Neagu (a1) and T. Borca-Tasciuc (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed