Skip to main content Accessibility help
×
Home

Therirmochemistry in C.V.D. - on the Choice of Haliide Gas Species

  • C. Bernard (a1) and R. Madar (a2)

Abstract

The production of thin or thick films of metals or ceramics by chemical vapour deposition has often been achieved by the use of halide gas precursors. In certain cases, this choice was made purely for reasons of simplicity: gas cylinder available, gas species already used in another field, etc. Experience has subsequently shown, however, that this choice can give rise to significant changes in the nature and proportions of deposited phases. These are highly dependent upon:

  • – the value of the oxidiser:reducer ratio in the gas phase,
  • – the degree of metal oxidation in the halide considered,
  • – possible competition between two reducing agents designed to reduce the halide.
These factors, among others, strongly influence the thermochemistry of the deposition reaction. Their roles must therefore be clearly understood, interpreted and predicted by the thermochemical analysis. Based on examples relating to silicide, nitride and boride deposits, an attempt will be made to determine the sensitive parameters and to deduce selection criteria.

Copyright

References

Hide All
[1] Borland, J.O., in Proc. 10th International Conference on Chemical Vapor Deposition, Cullen, G.W. Ed. (The Electrochemical Society, Pennington, NJ, 1987), PP.307316.
[2] Hitchman, M.L., Jobson, A.D. and Kwakman, L.F.T., Appl. Surf. Science, 38, 312337 (1989).
[3] Langlais, F. and Prebende, C., in Procd. 11 th International Conference on Chemical Vapor Deposition, Spear, K.E. and Cullen, G.W. Eds. (The Electrochemical Society, Pennington, N.J., 1990), PP. 686695.
[4] Bhat, D.G., in Procd, 11th International Conference on Chemical Vapor Deposition, Spear, K.E. and Cullen, G.W. Eds (The Electrochemical Society, Pennington, N.J., 1990), PP. 648655.
[5] Bernard, C. and Madar, R., in Chemical Vapor Deposition of Refractory Metals and Ceramics, Besmann, T.M. and Gallois, B.M. Eds. (Mat. Res. Soc. Proc. 168, Pittsburgh, PA 1990) PP. 317.
[6] Spear, K.E. and Dirkx, R.R., in Chemical Vapor Deposition of Refractory Metals and Ceramics, Besmann, T.M. and Gallois, B.M. Eds. (Mat. Res. Soc. Proc. 168, Pittsburgh, PA 1990), PP. 1930.
[7] Barbier, J.N. and Bernard, C., Proc. 15th Calphad Meeting, Kaufman, L. Ed., Calphad, 10, 203–238 (1986).
[8] Bernard, C., High Temp. Sci., 22, 131142 (1990).
[9] Thomas, N., Suryanarayana, P., Blanquet, E., Vahlas, C., Madar, R. and Bernard, C., to be published in J. Appl. Phy.
[10] Bernard, C., Madar, R. and Pauleau, Y., Sol. State Tech., 32, 7984 (1989).
[11] Blanquet, E., D.E.A., Université de Grenoble, 1987.
[12] Drouin-Ladouce, B., Thesis, Université d'Orléans, 1990.
[13] Teyssandier, F., Ducarroir, M. and Bernard, C., Ann. Chim.,.11, 543555 (1986).
[14] Thomas, N., Blanquet, E., Vahlas, C., Bernard, C. and Madar, R., Mat. Res. Soc. Symp. Procd. 204, Pittsburgh, PA 1991, PP. 451–456.
[15] Leprince, G., Thesis, Université d'Orléans, 1989.
[16] Broadbent, E.K. and Ramiller, C.L., J. Electrochem. Soc., 131, 14271433 (1984).
[17] Thebault, J., Naslain, R. and Bernard, C., in High Temperature Chemistry of Inorganic and Ceramic Materials, Glasser, F.P. and Potter, P.E. Eds. (the Chemical Society, Burlington House, London, 1976), PP. 146153.
[18] Bonetti, R., Conte, D. and Hintermann, H.E., in Proc. 5th International Conference on Chemical Vapor Deposition, Blocher, J.M., Hintermann, H.E. and Hall, L.H. Eds. (The Electrochemical Society, Pennington, N.J., 1975), PP. 495504.

Therirmochemistry in C.V.D. - on the Choice of Haliide Gas Species

  • C. Bernard (a1) and R. Madar (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed