Skip to main content Accessibility help
×
Home

Theory of volume transitions in polyelectrolyte gels

  • Mithun K. Mitra (a1) and M. Muthukumar (a1)

Abstract

We present the key assumptions and results of a newly developed theory in order to account for the self-consistent cascade effects of counterion condensation and volume collapse of polyeletrolyte gels. In the present theory, the role of the specificity and valency of counterions on the volume transitions are also treated. These features and the fluctuations of monomer concentration and local electrolyte charge density are included on top of the familiar features of the Flory-Huggins theory and the classical rubber elasticity theory in the previously used Flory-Dusek-Patterson-Tanaka theory of polyelectrolyte gels. We have computed the swelling equilibria by satisfying the multicomponent nature of the system and the Donnan equilibria. A few major effects are illustrated in terms of the dependence of volume transition on the solvent quality, temperature, salt concentration, valency and specificity of the counterion, and polymer charge density. Criteria for the emergence of a reentrant volume transition are also derived.

Copyright

References

Hide All
1.Flory, P. J., “ Principles of Polymer Chemistry” (Cornell University Press, Ithaca, 1953).
2.Dusek, K. and Prins, W., Advances in Polymer Science 6, 1 (1969).
3.Shibayama, M. and Tanaka, T., Advances in Polymer Science 109, 1 (1993).
4.Tanaka, T., Fillmore, D., Sun, S. T., Nishio, I., Swislow, G., and Shah, A., Phys. Rev.Lett. 45, 1636 (1980).
5.Ohmine, I. and Tanaka, T., J. Chem. Phys. 77, 5725 (1982).
6.Hirokaw, Y. and Tanaka, T., J. Chem. Phys. 81, 6379 (1984).
7.Hirotsu, S., Hirokawa, Y., and Tanaka, T., J. Chem. Phys 87, 1392 (1987).
8.Narh, K. A. and Keller, A., J. Polym. Sci., Part B: Polym Phys. 31, 231 (1993).
9.Narh, K. A. and Keller, A., J. Polym. Sci., Part B: Polym Phys. 32, 1697 (1994).
10.Delsanti, M., Dalbiez, J. P., Spalla, O., Belloni, L., and Drifford, M., ACS Symp. Ser. 548, 381 (1994).
11.Pelta, J., Livolant, F., and Sikorav, J. L., J. Biol. Chem. 271, 5656 (1996).
12.Beer, M., Schmidt, M., and Muthukumar, M., Macromolecules 30, 8375 (1997).
13.Raspaud, E., de la Cruz, M. O., Sikorav, J. L., and Livolant, F., Biophys. J. 74, 381 (1998).
14.Saminathan, M., Anthony, T., Shirahata, A., Sigal, L., Thomas, T., and Thomas, T. J., Biochemistry 38, 3821 (1999).
15.Sabbagh, I. and Delsanti, M., Eur. Phys. J. E 1, 75 (2000).
16.Prabhu, V. M., Muthukumar, M., Wignall, G. D., and Melnichenko, Y. B., Polymer 42, 8935 (2001).
17.Nishida, K., Kaji, K., Kanaya, T., and Shibano, T., Macromolecules 35, 4084 (2002).
18.Bordi, F., Cametti, C., Tan, J. S., Boris, D. C., Krause, W. E., Plucktaveesak, N., and Colby, R. H., Macromolecules 35, 7031 (2002).
19.Qu, D., Baigl, D., Williams, C. E., M¨owald, H., and Fery, A., Macromolecules 36, 6878 (2003).
20.Prabhu, V. M., Muthukumar, M., Wignall, G. D., and Melnichenko, Y. B., J. Chem. Phys. 119, 4085 (2003).
21.Wen, Q. and Tang, J. X., J. Chem. Phys. 121, 12666 (2004).
22.Volk, N., Vollmer, D., Schmidt, M., Oppermann, W., and Huber, K., Adv. Polym. Sci. 166, 29 (2004).10.1007/b11348
23.Kirwan, L. J., Papastavrou, G., and Borkovec, M., Nano Lett. 4, 149 (2004).
24.Kanai, S. and Muthukumar, M., J. Chem. Phys. 127, 244908 (2007).
25.Loh, P., Deen, G. R., Vollmer, D., Fischer, K., Schmidt, M., Kundagrami, A., and Muthukumar, M., Macromolecules 41, 9352 (2008).
26.Horkay, F., Tasaki, I., and Basser, P. J., Biomacromolecules 2, 195 (2001).
27.Shibayama, M., Polymer Journal 43, 18 (2011) .
28.Tanaka, T., Phy. Rev. A 17, 763 (1978).
29.Tanaka, T., Sato, E., Hirokawa, Y., Hirotsu, S. and Peetermans, J., Phys. Rev. Lett. 55, 2455 (1985)
30.Tanaka, T., Physica A: Stat Mech. 140, 261 (1986).
31.McCoy, J.L. and Muthukumar, M., J. Polym. Sci. Polym. Phys. 48, 2193 (2010).
32.Dusek, K. and Patterson, D., J. of Polym. Sci. A 6, 1209 (1968).
33.Tanaka, T., Phy. Rev. Lett. 40, 12 (1978).
34.Khokhlov, A. R., J. Phys. A 13, 979 (1980).
35.Khokhlov, A. R. and Kramarenko, E. Y., Macromol. Theory Simul. 3, 45 (1994).
36.Muthukumar, M., J. Chem. Phys. 120, 9343 (2004).
37.Muthukumar, M., Hua, J., and Kundagrami, A., J. Chem. Phys 132, 084901 (2010).
38.Hua, J., Mitra, M.K. and Muthukumar, M., J.Chem. Phys. (Under Review).
39.Press, W. H., Tuokolsky, S. A., Vetterling, W. T., and Flannery, B. P., “ Numerical Recipes” (Cambridge University Press, New York, 2007).
40.Marcus, Y., Chem. Rev. 88, 1475 (1988).

Keywords

Related content

Powered by UNSILO

Theory of volume transitions in polyelectrolyte gels

  • Mithun K. Mitra (a1) and M. Muthukumar (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.