Skip to main content Accessibility help
×
Home

Theory and Modelling of Field-Induced Electron Emission

  • Richard G. Forbes (a1)

Abstract

This paper addresses issues in the theory of field-induced electron emission. First, it summarises our present understanding of the theory of Fowler-Nordheim (FN) plots, and shows the relationship between a recent precise (in standard FN theory) approach to the interpretation of the FN-plot intercept and older approximate approaches. Second, it comments on the interpretation of FN plots taken from semiconductor field emitters. Third, it summarises the main points of a recent hypothesis about the mechanism of field-induced emission from carbonbased films and other electrically nanostructured heterogeneous (ENH) materials. Weaknesses in previous hypotheses are noted. It is hypothesised that thin films of all ENH materials, when deposited on a conducting substrate, will emit electrons in appropriate circumstances. Such films emit electrons at low macroscopic fields because they contain conducting nanostructure inside them: this structure generates sufficient geometrical field enhancement near the film/vacuum interface that more-or-less normal Fowler-Nordheim emission can occur. In connection with experiments on amorphous carbon films carried out by a group in Fribourg, it is shown that nanostructure of the size measured by scanning probe techniques should be able to generate field enhancement of the size measured in field electron spectroscopy experiments. This result provides a quantitative corroboration of other work suggesting that emission from amorphous carbon films is primarily due to geometrical field enhancement by nanostructures inside the film. Some counter-arguments to the internal-field-enhancement hypothesis are considered and disposed of. Some advantages of ENH materials as broad-area field emission electron sources are noted; these include control of material design.

Copyright

References

Hide All
1. Forbes, R. G., Solid State Electronics (submitted for publication).
2. Fowler, R. H. and Nordheim, L. W., Proc. R. Soc. Lond. A119, 173 (1928).
3. Murphy, E. L. and Good, R. H., Phys. Rev. 102, 1464 (1956).
4. Forbes, R. G., J. Vac. Sci. Technol. B17, 526 (1999).
5. Charbonnier, F. M. and Martin, E. E., J. Appl. Phys. 33, 1897 (1962).
6. Dobretsov, L. N. and Gomoyunova, M. V., Emission Electronics (Izdatel'stvo “Nauka”, Moscow, 1966) (trans. by: Israel Programme for Scientific Translations, Jerusalem, 1971).
7. Spindt, C. A., Brodie, I., Humphrey, L. and Westerberg, E. R., J. Appl. Phys. 47, 6248 (1976).
8. In the defintion in Ref. [4], a minus sign has been omitted: u needs to be positive.
9. Burgess, R. F., Kroemer, H. and Houston, J. M., Phys. Rev. 90, 515 (1953).
10. Forbes, R. G., J. Vac. Sci. Technol. B17, 534 (1999).
11. Modinos, A., Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984).
12 Stratton, R., Phys. Rev. 125, 67 (1962).
13. Pan, L. S., Mat. Res. Soc. Symp. Proc. 436, 407 (1996).
14. Shah, M., Physics World 10 (6), 39 (1997).
15. Chalamala, B. R. and Gnade, B. E., IEE Spectrum (April 1998) 42.
16. Zhirnov, V. V. and Hren, J. J., MRS Bulletin (September 1998) 42.
17. Silva, S. R. P., Robertson, J., Milne, W. I. and Amaratunga, G. A. J. (eds.), Amorphous Carbon: State of the the Art (World Scientific, Singapore, 1998).
18. Geiss, M. W., Efremow, N. N., Woodhouse, J. D., McAleese, M. D., Marchywka, M., Socker, D. G. and Hochedez, J. F., IEEE Electron Dev. Lett. 12, 456 (1991).
19. Wang, C., Garcia, A., Ingram, D. C., Lake, M. and Kordesch, M. E., Electronics Lett. 27, 1459 (1991).
20. Robertson, J., J. Vac. Sci. Technol. B17, 659 (1999).
21. Robertson, J., Carbon 37, 759 (1999).
22. Herring, C. and Nichols, M. H., Rev. Mod. Phys. 7, 95 (1935).
23. Hansen, L. K., J. Appl. Phys. 37, 4498 (1966).
24. Cui, J. B., Ristein, J. and Ley, L., Phys. Rev. B 60, 16135 (1999).
25. Silva, S. R. P., private communication.
26. Amaratunga, G. A. J. and S. Silva, R. P., Appl. Phys. Lett. 68, 2529 (1996).
27. Geiss, M. W., Twichell, J. C., Efremow, N.N., Krohn, K. and Lyszczarz, T. M., Appl. Phys. Lett. 68, 2294 (1996).
28. Küttel, O. M., Gröning, O., Nilsson, L., L. Diederich and Schlapbach, L., Electron Field Emission from Carbon Films, in Ref. [17].
29. Gröning, O., Küttel, O. M., Gröning, P. and Schlapbach, L., J. Vac. Sci. Tech. B17, 1 (1999).
30. Gröning, O., Küttel, O. M., Gröning, P. and Schlapbach, L., Appl. Phys. Lett. 71, 2253 (1997).
31. Young, R. D. and Clark, H. E., Phys. Rev. Lett. 17, 351 (1966).
32. Vorburger, T. V., Penn, D. and Plummer, E. W., Surface Sci. 48, 417 (1975).
33. Forbes, R. G., 1st European Field Emission Workshop, Toledo, November 1999 (unpublished abstracts).
34. Amaratunga, G. A. J., Baxendale, M., Rupesinghe, N., Alexandrou, I., Chhowalla, M., Butler, T., Munindradasa, A., Kiley, C. J., Zhang, L. and Sakai, T.., New Diamond and Frontier Carbon Tech. 9, 31 (1999).
35. Ilie, A., Ferrari, A.C., Yagi, T. and Robertson, J., Diamond 99, Prague, September 1999 (unpublished abstracts).
36. Robertson, J., these proceedings.
37. Bajic, S., Mousa, M. S. and Latham, R. V., Colloque de Physique 50 (C8), 79 (1989).
38. Tuck, R. A., Taylor, W., Jones, P. G. A. and Latham, R. V., Proc. 4th International Devices Workshop, Nagoya, 1997, p. 723.
39. Miller, M. K., Cerezo, A., Heatherington, M. G. and Smith, G. D. W., Atom Probe Field Ion Microscopy (Clarendon, Oxford, 1996).
40. Bajic, S. and Latham, R. V., J. Phys. D: Appl. Phys. 21, 200 (1988).
41. Braun, E., Forbes, R. G., Latham, R. V., Pelmore, J. M. and Sykes, D. E., 22nd International.Field Emission Symp., Atlanta, August 1975 (unpublished abstracts, p. 33).
42. Forbes, R. G., Technical Digest, 9th International Vacuum Microelectronics Conference (ISBN 5-86072-081-5) (Bonch-Rruevich Univ. of Telecommunications, St Petersburg, 1996) p. 58.
43. Mousa, M. S., Appl. Surf. Sci. 94/95, 129 (1996).
44. Modinos, A., Surface Sci. 42, 205 (1974).
45. Forrest, R. D., Burden, A. P., Silva, S. R. P., Cheah, L. K. and Shi, X., Appl. Phys. Lett. 73, 3784 (1998).
46. Göhl, A., Günther, B., Habermann, T., Müller, G., Schreck, M., Thürer, K. H. and Stritzker, B., J. Vac. Sci. Technol B 18, 1031 (2000).
47. Brodie, I. and Spindt, C. A., Adv. Electr. Electron Phys. 83, 1 (1992).

Theory and Modelling of Field-Induced Electron Emission

  • Richard G. Forbes (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed