Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T16:24:34.327Z Has data issue: false hasContentIssue false

Theory and Modelling of Field-Induced Electron Emission

Published online by Cambridge University Press:  14 March 2011

Richard G. Forbes*
Affiliation:
University of Surrey, School of Electronic Engineering, Guildford, Surrey GU2 7XH, UK
Get access

Abstract

This paper addresses issues in the theory of field-induced electron emission. First, it summarises our present understanding of the theory of Fowler-Nordheim (FN) plots, and shows the relationship between a recent precise (in standard FN theory) approach to the interpretation of the FN-plot intercept and older approximate approaches. Second, it comments on the interpretation of FN plots taken from semiconductor field emitters. Third, it summarises the main points of a recent hypothesis about the mechanism of field-induced emission from carbonbased films and other electrically nanostructured heterogeneous (ENH) materials. Weaknesses in previous hypotheses are noted. It is hypothesised that thin films of all ENH materials, when deposited on a conducting substrate, will emit electrons in appropriate circumstances. Such films emit electrons at low macroscopic fields because they contain conducting nanostructure inside them: this structure generates sufficient geometrical field enhancement near the film/vacuum interface that more-or-less normal Fowler-Nordheim emission can occur. In connection with experiments on amorphous carbon films carried out by a group in Fribourg, it is shown that nanostructure of the size measured by scanning probe techniques should be able to generate field enhancement of the size measured in field electron spectroscopy experiments. This result provides a quantitative corroboration of other work suggesting that emission from amorphous carbon films is primarily due to geometrical field enhancement by nanostructures inside the film. Some counter-arguments to the internal-field-enhancement hypothesis are considered and disposed of. Some advantages of ENH materials as broad-area field emission electron sources are noted; these include control of material design.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Forbes, R. G., Solid State Electronics (submitted for publication).Google Scholar
2. Fowler, R. H. and Nordheim, L. W., Proc. R. Soc. Lond. A119, 173 (1928).Google Scholar
3. Murphy, E. L. and Good, R. H., Phys. Rev. 102, 1464 (1956).Google Scholar
4. Forbes, R. G., J. Vac. Sci. Technol. B17, 526 (1999).Google Scholar
5. Charbonnier, F. M. and Martin, E. E., J. Appl. Phys. 33, 1897 (1962).Google Scholar
6. Dobretsov, L. N. and Gomoyunova, M. V., Emission Electronics (Izdatel'stvo “Nauka”, Moscow, 1966) (trans. by: Israel Programme for Scientific Translations, Jerusalem, 1971).Google Scholar
7. Spindt, C. A., Brodie, I., Humphrey, L. and Westerberg, E. R., J. Appl. Phys. 47, 6248 (1976).Google Scholar
8. In the defintion in Ref. [4], a minus sign has been omitted: u needs to be positive.Google Scholar
9. Burgess, R. F., Kroemer, H. and Houston, J. M., Phys. Rev. 90, 515 (1953).Google Scholar
10. Forbes, R. G., J. Vac. Sci. Technol. B17, 534 (1999).Google Scholar
11. Modinos, A., Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984).Google Scholar
12 Stratton, R., Phys. Rev. 125, 67 (1962).Google Scholar
13. Pan, L. S., Mat. Res. Soc. Symp. Proc. 436, 407 (1996).Google Scholar
14. Shah, M., Physics World 10 (6), 39 (1997).Google Scholar
15. Chalamala, B. R. and Gnade, B. E., IEE Spectrum (April 1998) 42.Google Scholar
16. Zhirnov, V. V. and Hren, J. J., MRS Bulletin (September 1998) 42.Google Scholar
17. Silva, S. R. P., Robertson, J., Milne, W. I. and Amaratunga, G. A. J. (eds.), Amorphous Carbon: State of the the Art (World Scientific, Singapore, 1998).Google Scholar
18. Geiss, M. W., Efremow, N. N., Woodhouse, J. D., McAleese, M. D., Marchywka, M., Socker, D. G. and Hochedez, J. F., IEEE Electron Dev. Lett. 12, 456 (1991).Google Scholar
19. Wang, C., Garcia, A., Ingram, D. C., Lake, M. and Kordesch, M. E., Electronics Lett. 27, 1459 (1991).Google Scholar
20. Robertson, J., J. Vac. Sci. Technol. B17, 659 (1999).Google Scholar
21. Robertson, J., Carbon 37, 759 (1999).Google Scholar
22. Herring, C. and Nichols, M. H., Rev. Mod. Phys. 7, 95 (1935).Google Scholar
23. Hansen, L. K., J. Appl. Phys. 37, 4498 (1966).Google Scholar
24. Cui, J. B., Ristein, J. and Ley, L., Phys. Rev. B 60, 16135 (1999).Google Scholar
25. Silva, S. R. P., private communication.Google Scholar
26. Amaratunga, G. A. J. and S. Silva, R. P., Appl. Phys. Lett. 68, 2529 (1996).Google Scholar
27. Geiss, M. W., Twichell, J. C., Efremow, N.N., Krohn, K. and Lyszczarz, T. M., Appl. Phys. Lett. 68, 2294 (1996).Google Scholar
28. Küttel, O. M., Gröning, O., Nilsson, L., L. Diederich and Schlapbach, L., Electron Field Emission from Carbon Films, in Ref. [17].Google Scholar
29. Gröning, O., Küttel, O. M., Gröning, P. and Schlapbach, L., J. Vac. Sci. Tech. B17, 1 (1999).Google Scholar
30. Gröning, O., Küttel, O. M., Gröning, P. and Schlapbach, L., Appl. Phys. Lett. 71, 2253 (1997).Google Scholar
31. Young, R. D. and Clark, H. E., Phys. Rev. Lett. 17, 351 (1966).Google Scholar
32. Vorburger, T. V., Penn, D. and Plummer, E. W., Surface Sci. 48, 417 (1975).Google Scholar
33. Forbes, R. G., 1st European Field Emission Workshop, Toledo, November 1999 (unpublished abstracts).Google Scholar
34. Amaratunga, G. A. J., Baxendale, M., Rupesinghe, N., Alexandrou, I., Chhowalla, M., Butler, T., Munindradasa, A., Kiley, C. J., Zhang, L. and Sakai, T.., New Diamond and Frontier Carbon Tech. 9, 31 (1999).Google Scholar
35. Ilie, A., Ferrari, A.C., Yagi, T. and Robertson, J., Diamond 99, Prague, September 1999 (unpublished abstracts).Google Scholar
36. Robertson, J., these proceedings.Google Scholar
37. Bajic, S., Mousa, M. S. and Latham, R. V., Colloque de Physique 50 (C8), 79 (1989).Google Scholar
38. Tuck, R. A., Taylor, W., Jones, P. G. A. and Latham, R. V., Proc. 4th International Devices Workshop, Nagoya, 1997, p. 723.Google Scholar
39. Miller, M. K., Cerezo, A., Heatherington, M. G. and Smith, G. D. W., Atom Probe Field Ion Microscopy (Clarendon, Oxford, 1996).Google Scholar
40. Bajic, S. and Latham, R. V., J. Phys. D: Appl. Phys. 21, 200 (1988).Google Scholar
41. Braun, E., Forbes, R. G., Latham, R. V., Pelmore, J. M. and Sykes, D. E., 22nd International.Field Emission Symp., Atlanta, August 1975 (unpublished abstracts, p. 33).Google Scholar
42. Forbes, R. G., Technical Digest, 9th International Vacuum Microelectronics Conference (ISBN 5-86072-081-5) (Bonch-Rruevich Univ. of Telecommunications, St Petersburg, 1996) p. 58.Google Scholar
43. Mousa, M. S., Appl. Surf. Sci. 94/95, 129 (1996).Google Scholar
44. Modinos, A., Surface Sci. 42, 205 (1974).Google Scholar
45. Forrest, R. D., Burden, A. P., Silva, S. R. P., Cheah, L. K. and Shi, X., Appl. Phys. Lett. 73, 3784 (1998).Google Scholar
46. Göhl, A., Günther, B., Habermann, T., Müller, G., Schreck, M., Thürer, K. H. and Stritzker, B., J. Vac. Sci. Technol B 18, 1031 (2000).Google Scholar
47. Brodie, I. and Spindt, C. A., Adv. Electr. Electron Phys. 83, 1 (1992).Google Scholar