Skip to main content Accessibility help
×
Home

Theoretical Study of Si-Rich Transition-Metal Silicides with Double-Graphene-Like Structures

  • Takehide Miyazaki (a1) and Toshihiko Kanayama (a2)

Abstract

We propose a novel form of graphene-like Si nanostructure based on ab initio total-energy calculation and geometry optimization, (MSi12)n, with M being transition metal atom. It has a three-layer structure, where the two layers of Si atoms in graphene-like positions sandwich another layer of transition metal atoms. The electronic structure may become semiconducting or metallic, depending on the choice of M and arrangement of Si atoms. This hypothetical material can be regarded as a Si-rich phase of transition metal silicide. A potential impact of our finding in forthcoming ultra-scaled Si technology is also discussed.

Copyright

References

Hide All
1. Horiuchi, S., Gotou, T., Fujiwara, M., Asaka, T., Yokosawa, T. and Matsui, Y., Appl. Phys. Lett. 84, 2403 (2004).
2. Li, J.-L., Kudin, K. N., McAllister, M. J., Prud'homme, R. K., Aksay, I. A., and Car, R., Phys. Rev. Lett. 96, 176101-1 (2006).
3. Novoselov, K. S., Geimm, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306, 666 (2004).
4. Novoselov, K. S., Geimm, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Nature 438, 197 (2005).10.1038/nature04233
5. Yin, M. T. and Cohen, M. L., Phys. Rev. B29, 6996 (1984).
6. Takeda, K. and Shiraishi, K., Phys. Rev. B50, 14916 (1994).
7. Wang, Y.-C. and Sheerschmidt, K. and Gosele, U., Phys. Rev. B61, 12864 (2000).
8. Durgun, E., Tongay, S. and Ciraci, S., Phys. Rev. B72, 075420 (2005).
9. Miyamoto, Y. and Yu, B. D., Appl. Phys. Lett. 80, 586 (2002).
10. Freeman, C. L., Claeyssens, F., Allan, N. L. and Harding, J. H., Phys. Rev. Lett. 96, 066102 (2006).
11. We used the STATE (Simulation Tools for Atom Technology) code. See, for example, Morikawa, Y., Ishii, H., and Seki, K., Phys. Rev. B69 041403 (R) (2004).
12. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).10.1103/PhysRev.136.B864
13. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).
14. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).
15. Vanderbilt, D., Phys. Rev. B41, 7892 (1990).10.1103/PhysRevB.41.7892
16. Laasonen, K., Pasquarello, A., Car, R., Lee, C. and Vanderbilt, D., Phys. Rev. B47, 10142 (1993).10.1103/PhysRevB.47.10142
17. Troullier, N. and Martins, J. L., Phys. Rev. B43, 1993 (1991).
18. Hiura, H., Miyazaki, T. and Kanayama, T., Phys. Rev. Lett. 86, 1733 (2001).
19. Miyazaki, T. and Kanayama, T., Jpn. J. Appl. Phys. Pt. 2, in press.
20. International Technology Roadmap for Semiconductors, SIA, EECA, EIAJ, KSIA, TSIA, 2005.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed