Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T22:41:56.859Z Has data issue: false hasContentIssue false

Theoretical Modelling of the Surface Oxidation of a Silicon Carbide Nanopowder, Based on the v(SiH) Frequency Evolution

Published online by Cambridge University Press:  15 February 2011

Marie-Isabelle Baraton
Affiliation:
LMCTS – URA 320 CNRS, Faculty of Sciences, 123 Av. Albert Thomas, F-87060 Limoges, France, baraton@unilimf
Sylvette Besnainou
Affiliation:
Laboratory of Physical Chemistry, URA 176 CNRS, University of Paris VI, 11 rue P. et M.Curie, F-75231 Paris Cedex 05, France
Get access

Abstract

Due to hydrolysis by atmospheric water, the first atomic layer of silicon carbide contains oxygen atoms. The oxygen content on the surface dramatically increases for nanosized SiC powder and strongly affects the overall properties. The presence of SiH groups on the SiC surface, already proven by Fourier transform infrared spectrometry, can be used to investigate the oxidation mechanism. Indeed, the v(SiH) stretching frequency known to strongly depend on the surrounding electronegativity of the silicon atom is directly related to the oxidation degree. Based on our infrared spectroscopic experimental data, ab initio calculations were performed on models representing the SiH surface species in different environments. Using the Hartree-Fock method with 3–21G and 6–31G basis sets, the v(SiH) frequencies were calculated for each model versus the number of substituted oxygen atoms. The comparison with the experimental values led to a discussion of our proposed models and of the SiC surface oxidation mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baraton, M.–I., Merle, T., Quintard, P. and Lorenzelli, V., Langmuir 9, 1486 (1993).Google Scholar
2. Baraton, M.–I., Chen, X. and Gonsalves, K.E., Chemistry of Materials, (1996), to be published.Google Scholar
3. Ramis, G., Quintard, P., Cauchetier, M., Busca, G. and Lorenzelli, V., J. Amer. Ceram. Soc. 72(9), 1692 (1989).Google Scholar
4. Munro, R. G. and Dapkunas, S. J., J. Research N.I.S.T. 98(5), 607 (1993).Google Scholar
5. Vix-Guterl, C., Lahaye, J. and Ehrburger, P., Carbon 31(4), 629 (1993).Google Scholar
6. Minagawa, H., Vina, R.O., Kadowaki, T., Mizuno, S., Tochihara, H., Hayakawa, K. and Toyoshima, I., Jpn J. Appl. Phys. 31(2), L1707 (1992).Google Scholar
7. Rahaman, M.N., Boiteux, Y. and De Jonghe, L.C., Am. Ceram. Soc. Bull. 65(8), 1171 (1986).Google Scholar
8. Quintard, P., Ramis, G., Cauchetier, M., Busca, G., and Lorenzelli, V., J. Mol. Struct. 174, 369 (1988).Google Scholar
9. Ramis, G., Busca, G., Lorenzelli, V., Baraton, M.–I., Merle-Méjean, T. and Quintard, P., inSurfaces and Interfaces Analysis, edited by Dufour, L.C. (Kluwer Academic Publishers,Dordrecht, 1989) pp. 173184.Google Scholar
10. Koropecki, R. R., Alvarez, F., and Arce, R., J. Appl. Phys. 69(11), 7805 (1991).Google Scholar
11. Tsu, D. V. and Lucovsky, G., J. Non-Cryst. Solids 114(2), 501 (1989).Google Scholar
12. Tsu, D. V., Lucovsky, G. and Davidson, B. N., Phys. Rev. B 40(3), 1795 (1989).Google Scholar
13. Hayashi, S., Kawata, S., Kim, H.M. and Yamamoto, K., Jpn J. Appl. Phys. 42, 4870 (1993).Google Scholar
14. He, L., Kurata, Y., Inokuma, T., and Hasegawa, S., Appl. Phys. Lett. 63(2), 162 (1993).Google Scholar
15. Baraton, M.I., Besnaïnou, S. and Merhari, L. in Molecularly Designed Ultrafine/NanostructuredMaterials, edited by Gonsalves, K.E., Chow, G.–M., Xiao, T.D. and Cammarata, R.C. (Mater.Res. Soc. Proc. 351, San Francisco, CA, 1994) pp. 381–386.Google Scholar
16. Baraton, M.–I., Journal of High Temperature and Chemical Processes 3, 545 (1994).Google Scholar
17. Cauchetier, M., Croix, O., Luce, M., Michon, M., Paris, J. and Tistchenko, S., Ceram. Intern. 13,13 (1987).Google Scholar
18. Baraton, M.–I., NanoStructured Materials 5(2), 179 (1995).Google Scholar
19. Eldridge, J.M., Moore, J.O., Olive, G. and Dunton, V., J. Electrochem. Soc. 137(7), 2266 (1990).Google Scholar
20. Hehre, W. J., Radom, L., Schleyer, P. v.R. and Pople, J. A., Ab initio Molecular OrbitalTheory (J.Wiley Publishers, New-York, 1986) p. 133.Google Scholar
21. Janz, G. J. and Mikawa, Y., Bull. Chem. Soc. Japan 34(10), 1495 (1961).Google Scholar
22. McKean, D.C., Torto, I., Boggs, J.E. and Fan, K., J. Mol. Structure (Theochem) 260, 27 (1992).Google Scholar