Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T07:00:20.644Z Has data issue: false hasContentIssue false

Theoretical Investigation of Nitrogen-Doping Effect on Native Defect Aggregation Processes in Silicon

Published online by Cambridge University Press:  01 February 2011

H. Kageshima
Affiliation:
NTT Basic Research Labs., NTT Corporation, Atsugi, Kanagawa 243-0198 Japan.
A. Taguchi
Affiliation:
NTT Basic Research Labs., NTT Corporation, Atsugi, Kanagawa 243-0198 Japan.
K. Wada
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Get access

Abstract

We theoretically investigated interactions between nitrogen (N) atoms and Si native defects, vacancy (V) and interstitial (I), by using first-principles calculations in order to shed light on the nitrogen-doping effect on the defect aggregation processes. Stabilities of various N-I and N-V complexes are examined by calculating the total energy. We found that N atoms form stable complexes with both of V and I. The formation of such stable complexes reduces the effective concentrations of the native defects, resulting in the suppression of aggregation processes of V and I.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For example, Ohashi, W., Ikari, A., Ohta, Y., Tachikawa, A., Deai, H., Yokota, H., and Hoshino, T., Jpn. Soc. Appl. Phys. 1999 Spring meeting, 29aZB1 [in Japanese].Google Scholar
2. Abe, T., Harada, H., and Chikawa, J., MRS Proc. 59, 537 (1986)Google Scholar
3. Shimura, F. and Hockett, R. S., Appl. Phys. Lett. 48, 224 (1986)Google Scholar
4. Akatsuka, M. and Sueoka, K., Jpn. J. Appl. Phys. 40, 1240 (2001)Google Scholar
5. Fuma, N., Tashiro, K., Kakumoto, K., and Takano, Y., Jpn. J. Appl. Phys. 35, 1993 (1996); D. Yang, R. Fan, L.Li, D. Que, and K. Sumino, J. Appl. Phys. 80, 1493 (1996)Google Scholar
6. Kageshima, H., Taguchi, A., and Wada, K., Appl. Phys. Lett. 76, 3718 (2000); Proc. of ICPS-26 1469 (2000).Google Scholar
7. Sawada, H. and Kawakami, K., Phys. Rev. B 62, 1851 (2000)Google Scholar
8. Ammon, W. von, Hölzl, R., Virubulis, J., Dornberger, E., Schmolke, R., and Gräf, D., J. Cryst. Growth 226, 19 (2001)Google Scholar
9. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990); J. Yamauchi, M. Tsukada, S. Watanabe, and O. Sugino, Surf. Sci. 341, L1037 (1995); H. Kageshima and K. Shiraishi, Phys. Rev. B 56, 14985 (1997); H. Kageshima and K. Shiraishi, Surf. Sci. 380, 61 (1997); A. Taguchi and H. Kageshima, Phys. Rev. B 60, 5383 (1999)Google Scholar
10. Teter, M. P., Payne, M. C., and Allen, D. C., Phys. Rev. B 40, 12255 (1989); O. Sugino and A. Oshiyama, Phys. Rev. Lett. 68, 1858 (1992)Google Scholar
11. Stein, H. J., Appl. Phys. Lett. 43, 296 (1983); Y. Itoh, T. Nozaki, T. Masui, and T. Abe, Appl. Phys. Lett. 47, 488 (1985)Google Scholar
12. Jones, R., Öberg, O., Rasmussen, F. B., and Neilsen, B. B., Phys. Rev. Lett. 72, 1882 (1994)Google Scholar
13. Rasmussen, F. B. and Neilsen, B. B., Phys. Rev. B 49, 16353 (1994)Google Scholar
14. Oshiyama, A., Saito, M., and Sugino, O., Appl. Surf. Sci. 85, 239 (1995)Google Scholar
15. Blöchl, P. E., Smargiassi, E., Car, R., Laks, G. B., Andreoi, W., and Pantelides, S. T., Phys. Rev. Lett. 70, 2435 (1993)Google Scholar
16. Coomer, B. J., Goss, J. P., Jones, R., Oberg, S., and Briddon, P. R., Physica B 274, 505 (1999)Google Scholar
17. Tsukada, M. et al., computer program package TAPP, University of Tokyo, Tokyo, Japan, 19832002; Yamauchi, M. Tsukada, S. Watanabe, and O. Sugino, Phys. Rev. B 54, 5586 (1996)Google Scholar