Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T09:38:48.881Z Has data issue: false hasContentIssue false

Theoretical Investigation of Effective Quantum Dots Induced by Strain in Semiconductor Wires

Published online by Cambridge University Press:  09 August 2011

Kenji Shiraishi
Affiliation:
NTT Basic Research Laboratories, Atsugi-shi, Kanagawa 243-0198, Japan. siraisi @will.brl.ntt.co.jp
Masao Nagase
Affiliation:
NTT Basic Research Laboratories, Atsugi-shi, Kanagawa 243-0198, Japan. siraisi @will.brl.ntt.co.jp
Seiji Horiguchi
Affiliation:
NTT Basic Research Laboratories, Atsugi-shi, Kanagawa 243-0198, Japan. siraisi @will.brl.ntt.co.jp
Hiroyuki Kageshima
Affiliation:
NTT Basic Research Laboratories, Atsugi-shi, Kanagawa 243-0198, Japan. siraisi @will.brl.ntt.co.jp
Get access

Abstract

A new fabrication technique for quantum dots is proposed on the basis of theoretical studies. It is known that the self-limiting phenomena of silicon oxidation are governed by the large stress induced by the volume expansion. We estimated the change in the band parameter of the silicon under the stress induced by the oxidation. The results show that the band-gap of the silicon considerably decreases under two-dimensional compressive strain. Accordingly, introducing strain to a small part of a Si wire results in the formation of a “strain-induced effective quantum dot”. Moreover, we also propose theoretically a new procedure for fabricating a silicon single electron transistor by the combination of silicon oxidation and nitridation techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tarucha, S. et al. Phys. Rev. Lett., 77, 3613 (1996).Google Scholar
[2] Fujisawa, T., Oostrkamp, T. H., Wiel, W. G. van der, Broer, B. W., Aguado, R., Tarucha, S., and Kouwenhoven, L. P., Science, 282, 932 (1998).Google Scholar
[3] Leonard, D., Pond, K., and Peroff, P. M., Phys. Rev. B, 501, 1687 (1994).Google Scholar
[4] Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. Technol. A 2, 436 (1984).Google Scholar
[5] Kageshima, H. and Shiraishi, K., Phys. Rev. Lett., 81, 5936 (1998).Google Scholar
[6] Liu, H. I., Biegelsen, D. K., Johnson, N. M., Ponce, F. A., and Pease, R. F. W, J. Vac. Sci. Technol. B 11, 2532 (1993).Google Scholar
[7] Hohenberg, P. and Kohn, W., Phys. Rev., B 136, 864 (1964).Google Scholar
[8] Kohn, W. and Sham, L. J.; Phys. Rev., A 140, 1133 (1965).Google Scholar
[9] Ihm, J., Zunger, A. and Cohen, M. L., J. Phys. C 12, 4409 (1979).Google Scholar
[10] Hamann, D. R., Schluter, M. and Chiang, C., Phys. Rev. Lett., 43, 1494 (1979).Google Scholar
[11] Ceperley, D. M. and Alder, B. J.; Phys. Rev. Lett., 45, 566 (1980).Google Scholar
[12] Perdew, J. P. and Zunger, A., Phys. Rev., B 23, 5048 (1981).Google Scholar
[13] Horiguchi, S., unpublished.Google Scholar
[14] Murayama, M. and Nakayama, T., J. Phys. Soc. Jpn., 61, 2419 (1992).Google Scholar
[15] Takahashi, Y. Namatsu, H., Kurihara, K., Iwadate, K., Nagase, M., Murase, K., and Tabe, M., IEEE Trans. Electron. Devices, 43, 1213 (1996).Google Scholar