Skip to main content Accessibility help

Ternary Cu3BiY 3 (Y = S, Se, and Te) for Thin-Film Solar Cells

  • Mukesh Kumar (a1) and Clas Persson (a1) (a2)


Very recently, Cu3BiS3 has been suggested as an alternative material for photovoltaic (PV) thin-film technologies. In this work, we analyze the electronic and optical properties of Cu3BiY 3 with the anion elements Y = S, Se, and Te, employing a first-principles approach within the density function theory. We find that the three Cu3BiY 3 compounds have indirect band gaps and the gap energies are in the region of 1.2–1.7 eV. The energy dispersions of the lowest conduction bands are small, and therefore the direct gap energies are only ∼0.1 eV larger than the fundamental gap energies. The flat conduction bands are explained by the presence of localized Bi p-states in the band gap region. Flat energy dispersion implies a large optical absorption, and the calculations reveal that the absorption coefficient of Cu3BiY 3 is larger than 105 cm−1 for photon energies of ∼2.5 eV. The absorption is stronger than other Cu-S based materials like CuInS2 and Cu2ZnSnS4. Thereby, Cu3BiY 3 has the potential to be a suitable material in thin-film PV technologies.



Hide All
1. Wadia, C., Alivisatos, A. P., and Kammen, D. M., Environ. Sci. Technol. 43, 2072 (2009).
2. Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B., and Noufi, R., Prog. Photovolt: Res. Appl. 16, 235 (2008).
3. Siebentritt, S., Igalson, M., Persson, C., and Lany, S., Prog. Photovolt: Res. Appl. 18, 390 (2010).
4. Britt, J. and Ferekides, C., Appl. Phys. Lett. 62, 2851 (1993).
5. Wu, X., Sol. Energy 77, 803 (2004).
6. Katagiri, H., Thin Solid Films 480, 426 (2005).
7. Todorov, T. K., Reuter, K. B., and Mitzi, D. B., Adv. Mater. 11, E156 (2010).
8. Kumar, M. and Persson, C., Appl. Phys. Lett. 102, 062109 (2013).
9. Colombara, D., Peter, L. M., Hutchings, K., Rogers, K. D., Schäfer, S., Dufton, J. T. R., and Islam, M. S., Thin Solid Films 520, 5165 (2012).
10. Estrella, V., Nair, M. T. S., and Nair, P. K., Semicond. Sci. Technol. 18, 190 (2003).
11. Nair, P. K., Huang, L., Nair, M. T. S., Hailin, H., Meyers, E. A., and Zingaro, R. A., J. Mater. Res. 12, 651 (1997).’
12. Gerein, N. J. and Haber, J. A., Chem. Mater. 18, 6297 (2006).
13. Mesa, F., Dussan, A., and Gordillo, G., Phys. Status Solidi C 7, 917 (2010).
14. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).
15. Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).
16. Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).
17. Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).
18. Persson, C. and Ferreira da Silva, A., Appl. Phys. Lett. 86, 231912 (2005).
19. Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., and Bechstedt, F., Phys. Rev. B 73, 045112 (2006).
20. Kocman, V. and Nuffield, E. W., Acta Crystallogr. B29, 2528 (1973).
21. In Ref. 8, the T- and R-points are incorrectly described.
22. Yu, L., Kokenyesi, R. S., Keszler, D. A., and Zunger, A., Adv. Energy Mater. 3, 43 (2013).
23. Temple, D. J., Kehoe, A. B., Allen, J. P., Watson, G. W., and Scanlon, D. O., J. Phys. Chem. C 116, 7334 (2012).
24. Kumar, M. and Persson, C., J. Renewable Sustainable Energy 5, 0311616 (2013).
25. Choi, S.G., Chen, R., Persson, C., Kim, T.J., Hwang, S.Y., Kim, Y. D., and Mansfield, L. M., Appl. Phys. Lett. 101, 261903 (2012).
26. Zhao, H. and Persson, C., Thin Solid Films 519, 7508 (2011).


Ternary Cu3BiY 3 (Y = S, Se, and Te) for Thin-Film Solar Cells

  • Mukesh Kumar (a1) and Clas Persson (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed