Skip to main content Accessibility help

Temperature Dependence of the Linewidth and Peak Position of the Intersubband Infrared Absorption in GaAs/Al0.3Ga0.7As Quantum Wells

  • M. O. Manasreh (a1), C. E. Stutz (a1), K. R. Evans (a1), F. Szmulowicz (a2) and D. W. Fischer (a3)...


The linewidth and peak position (vo) of the intersubband transition (IT) in GaAs/Al0.3Ga0.7As multiple quantum wells are studied as a function of temperature using the infrared absorption technique. We find that electrons in the GaAs well are weakly coupled to the GaAs normal optical phonon mode. The total integrated area of IT absorption is found to be approximately constant in the samples that were doped in the well but temperature dependent in the samples that were doped in the barrier. We also find that vo increases as the temperature decreases. This blue shift is found to increase as the dopant concentration is increased. We calculated the absorption spectrum in a nonparabolic-anisotropic envelope function approximation including temperature dependent effective masses, nonparbolicity, conduction band offsets, the Fermi level, and lineshape broadening. Our results indicate that a large manybody correction, in particular an exchange interaction (Eexch) for the ground state, is necessary to account for the observed blue shift as the dopant concentration increases.



Hide All
1. West, L. C. and Eglash, S. J., Appl. Phys. Lett. 46, 1156 (1985).
2. Levine, B. F., Bethea, C. G., Choi, K. K., Walker, J., and Malik, R. J., Appl. Phys. Lett. 53, 231 (1988).
3. Covington, B. C., Lee, C. C., Hu, B. H., Taylor, H. F., and Streit, D. C., Appl. Phys. Lett. 54, 2145 (1989).
4. Levine, B. F., Bethea, C. G., Hasnain, G., Walker, J., and Malik, R. J., Appl. Phys. Lett. 5, 296 (1988); B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett. 5Q, 1092 (1987).
5. Harwit, A. and 'Harris, J. S. Jr., Appl. Phys. Lett. 50, 685 (1987).
6. Johnson, N. F., Ehrenreich, H., and Jones, R. V., Appl. Phys. Lett. 53, 180 (1988).
7. Ekenberg, U., Phys. Rev. B 36, 6152 (1987).
8. Bandara, K. M. S. V., Coon, D. D., Byungsung, O., Lin, Y. F., and Francombe, M. H., Appl. Phys. Lett. 53, 1931 (1988).
9. Watts, R. K., Point Defects in Crystals (Wiley, New York, 1977), chap. 3, p. 75.
10. Waugh, J. L. T. and Dolling, G., Phys. Rev. 132, 2410 (1963).
11. Chemla, D. S., Miller, D. A. B., Smith, P. W., Gossard, A. C., and Wiegmann, W., IEEE J. Quantum Electron. OE- 20, 265 (1984).
12. Wegener, M., Bar-Joseph, I., Sucha, G., Islam, M. N., Sauer, N., Chang, T. Y., and Chemla, D. S., Phys. Rev. B. 2, 12794 (1989).
13. Zhou, X., Bhattacharya, P. K., Hugo, G., Hong, S. C., and Gulari, E., Appl. Phys. Lett. 5A, 855 (1989).
14. Blakemore, J. S., J. Appl. Phys. 53, R123 (1982).
15. Varshni, Y. P., Physica 34, 149 (1967).
16. Adachi, S., J. Appl. Phys. 58, R1 (1985).
17. The IT peak position is obtained from the broadened σ(v), [σ(v)], and is given by:


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed