Skip to main content Accessibility help

Temperature and Frequency Dependencies of Ferroelectric Properties in Rhombohedral Epitaxial Pb(Zr,Ti)O3 Films with Perfect (111) Orientations Grown on CaF2 Substrates.

  • Yoshitaka Ehara (a1) (a2), Tomoaki Yamada (a3) (a4), Takashi Iijima (a5), Nagarajan Valanoor (a2) and Hiroshi Funakubo (a1)...


Perfectly (111)-oriented rhombohedral Pb(Zr, Ti)O3 [PZT] films were successfully grown on (111) CaF2 substrates. These films have the polar-axis perpendicular to the substrate surface without non-180o domains. Well saturated polarization (P) –electric field (E) hysteresis loops were observed at various frequencies and temperatures. Temperature dependence of the saturation polarization (P sat.) was in good agreement with the estimated one by Haun et al. using phenomenological approach but did not strongly depend on the measured frequencies. On the other hand, the coercive field (Ec ) increased with decreasing temperature and with increasing the measurement frequency.



Hide All
1. Vrejoiu, I., Rhun, G. L., Pintilie, L., Hesse, D., Alexe, M., and Gosele, U., Adv. Mater. 18, 1657 (2006).
2. Nagarajan, V., Roytburd, A., Stanishevsky, A., Prasertchoung, S., Zhao, T., Chen, L., Melngailis, J., Auciello, O., and Ramesh, R., Nature Mater. 2, 43 (2003).
3. Muralt, P., J. Micromesh Microeng. 10, 136 (2000).
4. Choi, W. J., Jeon, Y., Jeong, J. H., Sood, R., and Kim, S.G., J. Electriceram. 17, 543 (2006).
5. Lee, H. N., Nakhmanson, S. M., Chisholm, M. F., Christen, H. M., Rabe, K. M., and Vanderbilt, D., Phys. Rev. Lett. 98, 217602 (2007).
6. Fujisawa, T., Nakaki, H., Ikariyama, R., Morioka, H., Yamada, T., Saito, K., and Funakubo, H., Appl. Phys. Express 1, 085001 (2008).
7. Streiffer, S. K., Parker, C. B., Romanov, A. E., Lefevre, M. J., Zhao, L., Speck, J. S., Pompe, W., Foster, C. M., and Bai, G. R., J. Appl. Phys. 83, 2742 (1998)
8. Romanov, A. E., Lefevre, M. J., Speck, J. S., Pompe, W., Streiffer, S. K., and Foster, C. M., J. Appl. Phys. 83, 2754 (1998).
9. Yokoyama, S., Honda, Y., Morioka, H., Asano, G., Oikawa, T., Iijima, T., Matsuda, H., and Funakubo, H., Jpn. J. Appl. Phys. 42, 5922 (2003).
10. Saito, K., Kurosawa, T., Akai, T., Oikawa, T. and Funakubo, H., J. Appl. Phys. 93, 545 (2003).
11. Utsugi, S., Fujisawa, T., Ehara, Y., Yamada, T., Yasui, S., Chentir, M-. T., Morioka, H., Iijima, T., and Funakubo, H., J. Ceram. Soc. Jpn. 118, 627 (2010).
12. Haun, M. J., Furman, E., Jang, S. J., and Cross, L. E., Ferroelectrics 99, 63 (1989).
13. Ederer, C. and Spaldin, N. A., Phys. Rev. B71, 224103 (2005).
14. Ederer, C. and Spaldin, N. A., Phys. Rev. Lett. 95, 257601 (2005).
15. Jung, D. J., Dawber, M., Scott, J. F., Sinnamon, L. J., and Gregg, J. M., Integr. Ferroelectr. 48, 59 (2002).
16. Chen, X., Dong, X., Zhang, H., Cao, F., Wang, G., Gu, Y., He, H., Liu, Y., J. Am. Ceram. Soc., in preparation for publication.
17. So, Y. W., Kim, D. J., Noh, T. W., Yoon, J.-G., and Song, T. K., Appl. Phys. Lett. 86, 092905 (2005).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed