Skip to main content Accessibility help

TEM Evaluation of CuAu-I Type Ordered Structures in MBE grown Ingaas Crystals on (110) Inp Substrates

  • O. Ueda (a1), Y. Nakata (a1), T. Nakamura (a1) and T. Fujii (a1)


CuAu-I type ordered structures in InGaAs grown on (110) InP substrates by molecular beam epitaxy, have been studied by transmission electron microscopy. In the electron diffraction pattern from the InGaAs, superstructure spots associated withCuAu-I type ordered structure are found. When the tilting angle of the substrates increases, the ordering becomes stronger. The ordering is also stronger in crystals grown on substrates tilted toward the <001> or the <001> direction than those on substrates tilted toward the <110> direction. From these results, one can conclude that atomic steps on the growth surface play an important role in the formation of ordered structures. The ordering becomes stronger when the growth temperature increases in the range 360-485°C. In high resolution images of the crystal, doubling in periodicity of 220 and 200lattice fringes is found, which is associated with CuAu-I type ordered structure. Moreover, anti-phase boundaries are very often observed in the ordered regions. It is also found that ordering is not perfect, and that ordered regions are plate-like microdomains lying on planes slightly tilted from the (110) plane.



Hide All
1. Kuan, T. S., Kuech, T. F., Wang, W. I. and Wilkie, E. L., Phys Rev. Lett. 54, 210 (1985).
2. Ueda, O., Takikawa, M., Komeno, J. and Umebu, I., Japan. J. Appl. Phys. 26, L1824 (1987).
3. Ueda, O., Takikawa, M., Takechi, T., Komeno, J. and Umebu, I., J. Crystal Growth 93, 418 (1988).
4. Kondow, M., Kakibayashi, H. and Minagawa, S., J. Crystal Growth 88, 291 (1988).
5. Gavrilovic, P., Dabkowski, F. P., Mechan, M., Williams, J. E., Studius, W., Shahid, M. A. and Mahajan, S., J. Crystal Growth 93, 426 (1988).
6. Gomyo, A., Suzuki, T. and lijima, S., Phys. Rev. Lett. 60, 2645 (1988).
7. Suzuki, T., Gomyo, A. and Iijima, S., J. Crystal Growth 93, 396 (1988).
8. Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T. and Hamakawa, Y., J.Crystal Growth 93, 412 (1988).
9. Kondow, M., Kakibayashi, H., Tanaka, T. and Minagawa, S., Phys. Rev. Lett. 63, 884 (1989).
10. Kuan, T. S., Wang, W. I. and Wilkie, L., Appl. Phys. Lett. 51, 51 (1987).
11. Shahid, M. A., Mahajan, S., Laughlin, D. E. and , H. M. Cox, Phys. Rev. Lett. 58, 2567 (1987).
12. Nakayama, H. and Fujita, H., Inst. Phys. Conf. Ser. 79, 289 (1986).
13. Norman, A. G., Mallard, R. E., Murgatroyd, I. J., Booker, G. R., Moore, A. H. and Scott, M. D., Inst. Phys. Conf. Ser. 87, 77 (1987).
14. Ueda, O., Fujii, T., Nakata, Y., Yamada, H. and Umebu, I., J. Crystal Growth 95, 38 (1989).
15. Jen, H. R., Chemg, M. J. and Stringfellow, G. B., Appl. Phys. Lett. 48, 1603 (1986).
16. Ihm, Y. E., Ohtsuka, N., KLem, J. and Morkoq, H., Appl. Phys. Lett. 51, 2013 (1987).
17. Plano, W. E., Nam, D. W., Major, J. S. Jr., Hsieh, K. C. and Holonyak, N. Jr., Appl. Phys. Lett. 53, 2537 (1988).
18. Jen, H. R., Cao, D.S. and Stringfellow, G. B., Appl. Phys. Lett. 54, 1890 (1989).
19. Jen, H. R., Ma, K. Y. and Stringfellow, G. B., Appl. Phys. Lett. 54, 1154 (1989).
20. Henoc, P., Izrael, A., Quillec, M. and Launois, H., Appl. Phys. Lett. 40, 963 (1982).
21. Ueda, O., Isozumi, S. and Komiya, S., Japan. J. Appl. Phys. 23, 241 (1984).
22. Norman, A. G. and Booker, G. R., J. Appl. Phys. 57, 4715 (1985).
23. Tracy, M. M., Gibson, J. M. and Howie, A., Phil. Mag. A51, 389 (1985).
24. Chu, S. N. G., Nakahara, S., Strege, K. E. and Johnston, W. D. Jr., J. Appl. Phys. 57, 4610 (1985).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed