Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T22:13:09.964Z Has data issue: false hasContentIssue false

TEM Evaluation of CuAu-I Type Ordered Structures in MBE grown Ingaas Crystals on (110) Inp Substrates

Published online by Cambridge University Press:  26 February 2011

O. Ueda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Y. Nakata
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
T. Nakamura
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
T. Fujii
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Get access

Abstract

CuAu-I type ordered structures in InGaAs grown on (110) InP substrates by molecular beam epitaxy, have been studied by transmission electron microscopy. In the electron diffraction pattern from the InGaAs, superstructure spots associated withCuAu-I type ordered structure are found. When the tilting angle of the substrates increases, the ordering becomes stronger. The ordering is also stronger in crystals grown on substrates tilted toward the <001> or the <001> direction than those on substrates tilted toward the <110> direction. From these results, one can conclude that atomic steps on the growth surface play an important role in the formation of ordered structures. The ordering becomes stronger when the growth temperature increases in the range 360-485°C. In high resolution images of the crystal, doubling in periodicity of 220 and 200lattice fringes is found, which is associated with CuAu-I type ordered structure. Moreover, anti-phase boundaries are very often observed in the ordered regions. It is also found that ordering is not perfect, and that ordered regions are plate-like microdomains lying on planes slightly tilted from the (110) plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuan, T. S., Kuech, T. F., Wang, W. I. and Wilkie, E. L., Phys Rev. Lett. 54, 210 (1985).Google Scholar
2. Ueda, O., Takikawa, M., Komeno, J. and Umebu, I., Japan. J. Appl. Phys. 26, L1824 (1987).Google Scholar
3. Ueda, O., Takikawa, M., Takechi, T., Komeno, J. and Umebu, I., J. Crystal Growth 93, 418 (1988).CrossRefGoogle Scholar
4. Kondow, M., Kakibayashi, H. and Minagawa, S., J. Crystal Growth 88, 291 (1988).Google Scholar
5. Gavrilovic, P., Dabkowski, F. P., Mechan, M., Williams, J. E., Studius, W., Shahid, M. A. and Mahajan, S., J. Crystal Growth 93, 426 (1988).CrossRefGoogle Scholar
6. Gomyo, A., Suzuki, T. and lijima, S., Phys. Rev. Lett. 60, 2645 (1988).Google Scholar
7. Suzuki, T., Gomyo, A. and Iijima, S., J. Crystal Growth 93, 396 (1988).CrossRefGoogle Scholar
8. Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T. and Hamakawa, Y., J.Crystal Growth 93, 412 (1988).Google Scholar
9. Kondow, M., Kakibayashi, H., Tanaka, T. and Minagawa, S., Phys. Rev. Lett. 63, 884 (1989).Google Scholar
10. Kuan, T. S., Wang, W. I. and Wilkie, L., Appl. Phys. Lett. 51, 51 (1987).Google Scholar
11. Shahid, M. A., Mahajan, S., Laughlin, D. E. and , H. M. Cox, Phys. Rev. Lett. 58, 2567 (1987).Google Scholar
12. Nakayama, H. and Fujita, H., Inst. Phys. Conf. Ser. 79, 289 (1986).Google Scholar
13. Norman, A. G., Mallard, R. E., Murgatroyd, I. J., Booker, G. R., Moore, A. H. and Scott, M. D., Inst. Phys. Conf. Ser. 87, 77 (1987).Google Scholar
14. Ueda, O., Fujii, T., Nakata, Y., Yamada, H. and Umebu, I., J. Crystal Growth 95, 38 (1989).Google Scholar
15. Jen, H. R., Chemg, M. J. and Stringfellow, G. B., Appl. Phys. Lett. 48, 1603 (1986).Google Scholar
16. Ihm, Y. E., Ohtsuka, N., KLem, J. and Morkoq, H., Appl. Phys. Lett. 51, 2013 (1987).CrossRefGoogle Scholar
17. Plano, W. E., Nam, D. W., Major, J. S. Jr., Hsieh, K. C. and Holonyak, N. Jr., Appl. Phys. Lett. 53, 2537 (1988).Google Scholar
18. Jen, H. R., Cao, D.S. and Stringfellow, G. B., Appl. Phys. Lett. 54, 1890 (1989).Google Scholar
19. Jen, H. R., Ma, K. Y. and Stringfellow, G. B., Appl. Phys. Lett. 54, 1154 (1989).Google Scholar
20. Henoc, P., Izrael, A., Quillec, M. and Launois, H., Appl. Phys. Lett. 40, 963 (1982).CrossRefGoogle Scholar
21. Ueda, O., Isozumi, S. and Komiya, S., Japan. J. Appl. Phys. 23, 241 (1984).Google Scholar
22. Norman, A. G. and Booker, G. R., J. Appl. Phys. 57, 4715 (1985).Google Scholar
23. Tracy, M. M., Gibson, J. M. and Howie, A., Phil. Mag. A51, 389 (1985).CrossRefGoogle Scholar
24. Chu, S. N. G., Nakahara, S., Strege, K. E. and Johnston, W. D. Jr., J. Appl. Phys. 57, 4610 (1985).Google Scholar