Skip to main content Accessibility help

Targeting of a magnetic bionanomaterial to HepG2 human hepatocellular carcinoma cells using a galactose terminated lipid

  • Andrew Booth (a1) (a2), Thomas P. Coxon (a1), Julie E. Gough (a2) and Simon J. Webb (a1)


Magnetic nanoparticle-vesicle aggregates (MNPVs), a controlled release nanostructure, have been enhanced with the inclusion of a novel galactose terminated lipid for cell targeting. Quartz crystal microgravimetry with dissipation (QCM-D) demonstrated that the galactose headgroup was available to bind Erythrina Crista-galli lectin (ECL) when the lipid was incorporated into a lipid bilayer. Similarly, UV-visible spectrophotometry indicated that ECL recognized the galactose headgroup in vesicles, leading to vesicle adhesion and aggregation. Finally, confocal fluorescence microscopy was used to assess the galactose-mediated interaction of both vesicles and MNPVs with HepG2 human hepatocellular carcinoma cells expressing the asialoglycoprotein (ASGPR) galactose receptor.



Hide All
1. Gossen, M. and Bujard, H., Proc. Natl. Acad. Sci. U. S. A. 89, 55475551 (1992).
2. Schmole, A.-C., Hubner, R., Beller, M., Rolfs, A. and Frech, M. J., Curr. Pharm. Biotechnol. 14, 3645 (2013).
3. Murad, S., Grove, D., Lindberg, K. A., Reynolds, G., Sivarajah, A. and Pinnell, S. R., Proc. Natl. Acad. Sci. U. S. A. 78, 28792882 (1981).
4. Torchillin, V. P., Nat. Rev. Drug Discov. 4, 145160 (2005).
5. De Cogan, F., Booth, A., Gough, J. E. and Webb, S. J., Angew. Chem. Int. Ed. 50, 1229012293 (2011).
6. Safra, T., Muggia, F., Jeffers, S., Tsao-Wei, D. D., Groshen, S., Lyass, O., Henderson, R., Berry, G. and Gabizon, A., Ann. Oncol. 11, 10291033 (2000).
7. Pankhurst, Q. A., Connolly, J., Jones, S. K. and Dobson, J., J. Phys. Appl. Phys. 36, R167 (2003).
8. Schwartz, A. L., Fridovich, S. E., Knowles, B. B. and Lodish, H. F., J. Biol. Chem. 256, 88788881 (1981).
9. Ashwell, G. and Harford, J., Annu. Rev. Biochem. 51, 531554 (1982).
10. Sliedregt, L. A. J. M., Rensen, P. C. N, Rump, E. T. and van Santbrink, P. J., J. Med. Chem. 42, 609618 (1999).
11. Šardzík, R., Noble, G. T., Weissenborn, M. J., Martin, A., Webb, S. J. and Flitsch, S. L., Beilstein J. Org. Chem. 6, 699703 (2010).
12. Pilkington-Miksa, M. A., Sarkar, S., Writer, M. J., Barker, S. E., Shamlou, P. A., Hart, S. L., Hailes, H. C., Tabor, A. B., Eur. J. Org. Chem. 2008, 29002914 (2008).
13. Managit, C., Kawakami, S., Yamashita, F. and Hashida, M., J. Pharm. Sci. 94, 22662275 (2005).
14. Mouline, Z., Mahon, E., Gomez, E., Barragan-Montero, V., Montero, J.-L. and Barboiu, M., Chem. Commun. 50, 731733 (2013).
15. Reimhult, E., Kasemo, B., and Hook, F., Int. J. Mol. Sci. 10, 16831696 (2009).
16. Chen, S., Zhao, X., Chen, J., Chen, J., Kuznetsova, L., Wong, S. S. and Ojima, I., Bioconjug. Chem. 21, 979987 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed