Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-02T11:53:50.787Z Has data issue: false hasContentIssue false

Tailored Organometallics as Low-Temperature CVD Precursors to Thin Films

Published online by Cambridge University Press:  25 February 2011

Gregory S. Girolami
Affiliation:
School of Chemical Sciences and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
James A. Jensen
Affiliation:
School of Chemical Sciences and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
John E. Gozum
Affiliation:
School of Chemical Sciences and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Deborah M. Pollina
Affiliation:
School of Chemical Sciences and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Get access

Abstract

We have been investigating the use of “tailored” organo-metallic precursors for the chemical vapor deposition (CVD) of thin films in an effort to open up new approaches to the low-temperature synthesis of ceramic, electronic, and optical materials that contain transition metals. Following our approach to the successful deposition of high-quality titanium carbide thin films at 150–250°C from tetraneopentyltitanium, we have extended this technique to the preparation of other carbides, such as ZrC, HfC, TaC, and WC, at temperatures some 1000°C lower than previous CVD methods from the metal halides and methane. The details of the thermolysis of the organometálico precursors are most consistent with a mechanism involving homolysis of M-C bonds to give alkyl radicals followed by C-C and C-H bond activation steps. Metal diboride thin films such as TiB2, ZrB2, and HfB2 can be prepared at ca. 250 °C by CVD of suitable tetrahydroborate precursors: Ti(BH4)3-(MeOCH2CH2OMe), Zr(BH4)4, and Hf(BH4)4. In these cases, the principal byproducts are hydrogen and diborane. Mirror-bright, adhesive thin films up to 2 μm thick can be grown on a variety of substrates including glass, steel, aluminum, copper, silicon, and graphite. Despite the amorphous nature of the films, their electrical resistivities are essentially identical with those of the bulk polycrystalline material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dupuis, R. D. Science, 226, 623 (1984).CrossRefGoogle Scholar
2 Moss, R. H. Chem. Brit., 733 (1983).Google Scholar
3 Girolami, G. S., Jensen, J. A., Pollina, D. M., Williams, W. S., Kaloyeros, A. E., Allocca, C. M. J. Am. Chem. Soc., 109, 1579 (1987).CrossRefGoogle Scholar
4 Kaloyeros, A. E., Williams, W. S., Allocca, C. M., Pollina, D. M., Girolami, G. S. Adv. Ceram. Mater., 2, 257 (1987).Google Scholar
5 Jensen, J. A., Gozum, J. E., Pollina, D. M., Girolami, G. S. J. Am. Chem. Soc., 110. 1643 (1988).Google Scholar
6 Gozum, E., Jensen, J. A., Pollina, D. M., Girolami, G. S. J. Am. Chem. Soc., 110, in press (1988).Google Scholar
7 Trent, D. E., Paris, B., Krause, H. H. Inorg. Chem., 3, 1057 (1964).CrossRefGoogle Scholar
8 Nash, B. D., Campbell, T. T., Block, F. E. U.S. Dept, of the Interior Bureau of Mines, Report 7112 (1968).Google Scholar
9. Truex, J., Saillant, R. B., Monroe, F. M. J. Electrochem. Soc., 122, 1396 (1975).Google Scholar
10 Czekaj, C. L., Geoffroy, G. L. Inorg. Chem., 22, 8 (1988).CrossRefGoogle Scholar
11 Schwartzkopf, P., Kieffer, P., Leszynski, W., Denesovsky, F. Refractory Hard Metals, MacMillan, New York (1953).Google Scholar
12 Kaloyeros, A.E., Hoffman, M. P., Williams, W. S. Thin Solid Films, 141, 237 (1986).Google Scholar
13 Sugiyama, K., Pac, S., Takahashi, Y., Motojima, S. J. Electrochem. Soc., 122, 1545 (1975).Google Scholar
14 Takahashi, Y., Onoyama, N., Ishikawa, Y., Motojima, S., Sugiyama, K. Chem. Lett., 525 (1978).Google Scholar
15 Wilkinson, G., Stone, F. G. A., Abel, E. W. Comprehensive Orqanometallic Chemistry, Pergamon Press, New York (1982).Google Scholar
16 Bruno, J. W., Smith, G. M., Marks, T. J., Fair, C. K., Schultz, A. J. J. Am. Chem. Soc., 108, 40 (1986).Google Scholar
17 Lee, J. B., Ott, G. M., Grubbs, R. H. J. Am. Chem. Soc., 104, 7491 (1982).CrossRefGoogle Scholar
18 Connor, J. A. Topics in Curr. Chem., 71, 71 (1977).Google Scholar
19 Hoekstra, H. R. and Katz, J. J. J. Am. Chem. Soc., 71, 2488 (1949)Google Scholar
20 Domrachev, G. A., Mel'nikov, V. V., Kasarinov, G. B., Skorik, G. A., and Fukin, K. K. Brit. Patent 1, 306, 784 (1973).Google Scholar
21 Bonetti, R., Comte, D., and Hinterman, H. E. Proc Int. Conf. Chemical Vapor Deposition, 5th, 495 (1975).Google Scholar
22 Volkov, V. V. and Myakishev, K. G. Sov. Radiochem. 22, 574 (1980).Google Scholar
23 Gallagher, M. K. and Rhine, W. E. Report Rll, Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, (1987).Google Scholar
24 Feichtner, J. D. and Veligdan, J. T. U. S. Patent 4, 668, 538 (1987).Google Scholar
25 Rice, G. w. J. Am. Ceram. Soc. in press.Google Scholar
26 Wayda, A. L., Schneemeyer, L. F., and Opila, R. L. Appl. Phvs. Lett. in press.Google Scholar
27 Marks, T. J., Kolb, J. R. Chem. Rev., 77, 263 (1977).Google Scholar
28 Jensen, J. A., Wilson, S. R., Schultz, A. J., Girolami, G. S. J. Am. Chem. Soc. 109, 8094 (1987).CrossRefGoogle Scholar
29 Jensen, J. A., Girolami, G. S. Chem, J.. Soc. Chem. Comm., 1160 (1986).CrossRefGoogle Scholar