Skip to main content Accessibility help
×
Home

A Systematic Study of the Thermoelectric Properties of GaN-based Wide Band Gap Semiconductors

  • Elisa N. Hurwitz (a1), Bahadir Kucukgok (a1), Andrew G. Melton (a1), ZhiQiang Liu (a1) (a2), Na Lu (a3) and Ian T. Ferguson (a1)...

Abstract

In this paper the thermoelectric properties–the Seebeck coefficient, the electrical conductivity and the power factor – of GaN and InGaN thin films grown by Metal Organic Vapor Deposition (MOCVD) are reported. The Seebeck coefficient and power factor of InGaN decreases with increasing indium content, although the electrical conductivity shows an inverse behavior. P-type doped samples demonstrated the highest Seebeck coefficient (637 μV/K in GaN:Mg, 1200 μV/K in InGaN:Mg) but the lowest power factor (0.1x10-4 W/m-K for GaN:Mg, 0.4x10-4 W/m-K for InGaN:Mg). The Seebeck coefficient of the doped GaN thin films decreased linearly with log of the carrier concentration. GaN:Si exhibited a maximum power factor of 9.1x10-4 W/m-K with a carrier concentration of 1.6x1018 cm-3, and In0.1Ga0.9N exhibited a maximum power factor of 109x10-4 W/m-K with a carrier concentration of 1.2x1018 cm-3. The results also indicate that GaN and InGaN-based materials could potentially be useful materials for TE applications at high temperatures.

Copyright

References

Hide All
1. Bell, L. E., ‘Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems’, Science 321, 1457 (2008)
2. Snyder, G.J. and Toberer, E.S., ‘Complex Thermoelectric Materials’, Nat. Mater. 7, 105 (2008)
3. Morkoç, H., ‘Handbook of Nitride Semiconductors and Devices, Volume 1: Materials Properties, Physics, and Growth’, (Wiley-VCH, Weinheim, Germany 2008), p.49
4. Tong, H., Zhao, H., Handara, V. A., Herbsommer, J. A. and Tansu, N., ‘Analysis of Thermoelectric Characteristics of AlGaN and InGaN Semiconductors,’ Proc. SPIE 7211, 721103 (2009)
5. Hurwitz, E.N., Asghar, M., Melton, A., Kucukgok, B., Su, L., Orocz, M., Jamil, M., Lu, N. and Ferguson, I.T., ‘Thermopower Study of GaN-based Materials for Next-Generation Thermoelectric Devices and Applications,’ J. Electr. Mat. 40, 513 (2010)
6. Pantha, B.N., Dahal, R., Li, J., Lin, J. Y., Jiang, H. X., and Pomrenke, G., ‘Thermoelectric Properties of InxGa1−xN alloys,’ Appl. Phys. Lett. 92, 042112 (2008)
7. Götz, W., Johnson, N. M., Chen, C., Liu, H., Kuo, C., and Imler, W., ‘Activation Energies of Si Donors in GaN,’ Appl. Phys. Lett. 68, 3144 (1996)
8. Brandt, M.S., Herbst, P., Angerer, H., Ambacher, O., Stutzmann, M., ‘Thermopower Investigation of n- and p-type GaN,’Phys. Rev. B 58, 7786 (1998)
9. Szczech, J. R., Higgins, J. M., and Jin, S., ‘Enhancement of the Thermoelectric Properties in Nanoscale and Nanostructured Materials,’ J. Mater. Chem. 21, 4037 (2011)
10. Huang, Y., Melton, A., Jampana, B., Jamil, M., Ryou, J-H, Dupuis, R.D., and Ferguson, I.T., ‘Compositional Instability in Strained InGaN Epitaxial Layers Induced by Kinetic Effects’, J. Appl. Phys. 110, 064908 (2011)

Keywords

A Systematic Study of the Thermoelectric Properties of GaN-based Wide Band Gap Semiconductors

  • Elisa N. Hurwitz (a1), Bahadir Kucukgok (a1), Andrew G. Melton (a1), ZhiQiang Liu (a1) (a2), Na Lu (a3) and Ian T. Ferguson (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed