Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T09:19:37.976Z Has data issue: false hasContentIssue false

Systematic Studies on Magnetron-Sputtered Indium Nitride

Published online by Cambridge University Press:  25 February 2011

W. A. Bryden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, M D 20723–6099.
S. A. Ecelberger
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, M D 20723–6099.
J. S. Morgan
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, M D 20723–6099.
T. O. Poehler
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, M D 20723–6099.
T. J. Kistenmacher
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, M D 20723–6099.
Get access

Abstract

Extensive and systematic studies on reactive magnetron sputtering of InN thin films are summarized. The films have been deposited onto several types of substrates, with variations in such process parameters as deposition temperature, partial pressures of reactive and inert gases, sputtering power and gas flows. These films have been characterized by measuring their electrical, optical, structural and morphological properties. It has been shown that epitaxial growth of InN occurs on the basal plane of single-crystal (00.1) sapphire and (001) mica substrates and on the (111) face of cubic substrates such as silicon and zirconia.

Two principal problems currently limit the usefulness of thin films of InN. First, although epitaxy can be attained with the proper choice of substrate type and deposition temperature, the resulting film is an agglomerate of epitaxial grains -- not a single crystal. Second, all magnetron sputtered InN films prepared to date have low mobility and high carrier concentration (likely due to nitrogen vacancies). In an attempt to address these problems, experiments on the growth and characterization of sputtered InN films have been carried out and are discussed here with particular emphasis on seeded heteroepitaxial growth and the effects of film deposition temperature.

For example, it was found early that the growth of InN on the bare surface of several crystalline substrates at growth temperatures near 350°C results in a morphological transition that causes a degradation of semiconducting properties. The predeposition of an AIN seed layer inhibits this morphological transition and stabilizes a relatively high mobility state, but a still too high carrier concentration obtains. Further progress critically depends on optimizing the seeded heteroepitaxial growth technique in conjunction with the achievement of InN films with lower density of nitrogen vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).CrossRefGoogle Scholar
2. Tansley, T. L. and Foley, C. P., Electron. Lett. 20, 1066 (1984);Google Scholar
Foley, C. P. and Tansley, T. L., Appl. Surf. Sci. 22/23, 663 (1985).Google Scholar
3. Trainor, J. W. and Rose, K., J. Electr. Mat. 3, 821 (1974).CrossRefGoogle Scholar
4. Natarajan, B. R., Eltoukhy, A. H., Greene, J. E. and Barr, T. L., Thin Solid Films 68, 201 (1979).Google Scholar
5. Takai, O., Ebisawa, J. and Hisamatsu, Y., Proc. ICVM 7, 137 (1982).Google Scholar
6. Sullivan, B. T., Parsons, R. R., Westra, K. L. and Brett, M. J., J. Appl. Phys. 64, 4144 (1988).CrossRefGoogle Scholar
7. Kubota, K., Kobayashi, Y. and Fujimoto, K., J. Appl. Phys. 66, 2984 (1989).Google Scholar
8. Bryden, W. A., Morgan, J. S., Kistenmacher, T. J., Dayan, D., Fainchtein, R. and Poehler, T. O., Mat. Res. Symp. Proc. 162, 567 (1990).CrossRefGoogle Scholar
9. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 415 (1988);Google Scholar
Amano, H., Akasaki, I., Hiramatsu, K., Koide, N., and Sawaki, N., Thin Solid Films 163, 415 (1988);Google Scholar
Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 98, 209 (1989).CrossRefGoogle Scholar
10. Kistenmacher, T. J., Dayan, D., Fainchtein, R., Bryden, W. A., Morgan, J. S. and Poehler, T. O., Mat. Res. Symp. Proc. 162, 573 (1990).CrossRefGoogle Scholar
11. Morgan, J. S., Kistenmacher, T. J., Bryden, W. A. and Poehler, T. O., Mat. Res. Symp. Proc. 162, 579 (1990).Google Scholar
12. Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., Dayan, D., Fainchtein, R. and Poehler, T. O., J. Mater. Res. 6, 1300 (1991).Google Scholar
13. Morgan, J. S., Kistenmacher, T. J., Bryden, W. A. and Ecelberger, S. A., Mat. Res. Soc. Symp. Proc. 202, 383 (1991).Google Scholar
14. See, for example, Narayan, J., Godbole, V. P., and White, C. W., Science 252, 416 (1991) and references therein.CrossRefGoogle Scholar
15. Bryden, W. A., Morgan, J. S., Fainchtein, R. and Kistenmacher, T. J., Thin Solid Films (in press).Google Scholar
16. Kistenmacher, T. J., Bryden, W. A., Morgan, J. S. and Poehler, T. O., J. Appl. Phys. 68, 1541 (1990).CrossRefGoogle Scholar
17. Kistenmacher, T. J. and Bryden, W. A., Appl. Phys. Lett. 59, 1844 (1991);CrossRefGoogle Scholar
Kistenmacher, T. J., Ecelberger, S. A. and Bryden, W. A., Mat. Res. Soc. Symp. Proc. (this volume).Google Scholar
18. Bryden, W. A., Ecelberger, S. A. and Kistenmacher, T. J. (to be published).Google Scholar