Skip to main content Accessibility help
×
Home

Systematic Approach to the Synthesis of Organic-Inorganic Nanocomposites Based on Dmta Measurements and Ir Spectroscopy

  • Peter Müller (a1), Carsten Becker (a1) and Helmut Schmidt (a1)

Abstract

Sol-gel derived organic-inorganic hybrid materials with potential fields of application as refractive optical components for example laser diode bars and ophthalmic lenses are presented. The main components of the hybrid materials under investigation are precondensed methacryloxypropyltrimethoxysilane (MPTS, denoted: M) with an organically polymerisable methacrylic functionality and tetraethyleneglycoldimethacrylate (TEGDMA, denoted: T) as crosslinking organic monomer with two polymerisable double bonds. The molar ratios of the components ranged from M/T 10/90 up to M/T 70/30. The polymer derived from pure TEGDMA (M/T 0/100) served as a reference material. In addition to this nanoscaled TiO2 particles (5 wt.% and 10 wt.%) were incorporated in the organic-inorganic M/T 30/70 matrix to increase the refractive index of the resulting nanocomposites. For the preparation of the different systems, precondensed MPTS was mixed with TEGDMA, the nanoparticulate titania sol (when used), an appropriate photoinitiator and a thermoinitiator. The reaction mixtures were polymerised photochemically and/or thermally. The propagation of the free radical polymerisation reaction after photopolymerisation and subsequent thermal curing was followed by IR-spectroscopy, showing that the degree of double bond conversion is strongly increased by the thermal curing step. Incorporation of increasing amounts of TiO2 nanoparticles resulted in reduction of the double bond conversion compared to the corresponding unfilled system. The homogeneous dispersion of the titania particles in the completely cured M/T 30/70 matrix could be manifested by high resolution transmission electron microscopy (HTEM). The thermomechanical properties of the completely cured nanocomposites were monitored by dynamic mechanical thermal analysis (DMTA) showing a strong dependence on composition.

Copyright

References

Hide All
[1] Oliveira, P.W., Krug, H., Schmidt, H., SPIE 3136, Sol-Gel Optics IV, 442 (1997).
[21] Krug, H., Merl, N. and Schmidt, H., J. Non-Cryst. Solids 147&148, 447450 (1992).10.1016/S0022-3093(05)80656-8
[3] Oliveira, P.W., Krug, H., Künstle, H. and Schmidt, H., SPIE 2288, Sol-Gel Optics III, 554562 (1994).10.1117/12.188991
[4] Oliveira, P.W., Krug, H., Müller, P. and Schmidt, H., Mat. Res. Soc. Symp. Proc. 435, 553558 (1996).10.1557/PROC-435-553
[5] Wang, B., Wilkes, G.L., Pure Appl. Chem. A31, 249 1994.
[6] Kasemann, R., Schmidt, H., In: First European Workshop on Hybrid Organic-Inorganic Materials (Synthesis, Properties, Applications) Chateau de Bierville, France, Novembre 8–10, 171 1993.
[7] Schmidt, H.K., Geiter, E., Mennig, M., Krug, H., Becker, C., Winkler, R.P., J.Sol-Gel Sci. Technol. (1997) in print.
[8] Müller, P., Braune, B., Becker, C., Krug, H., Schmidt, H., SPIE 3136, Sol-Gel Optics IV, 462 (1997).
[9] Jackson, C.L., Bauer, B.J., Nakatami, A.I., Barnes, J.D., Chem.Mater. 8, 727 1996.10.1021/cm950417h
[10] Landry, C.J.T., Coltrain, B.K., Brady, B.K., Polymer 33 (7), 1486 (1992).10.1016/0032-3861(92)90126-H
[11] Huang, H.H., Wilkes, G.L., Polym. Bull. 18, 455 1987.
[12] Huang, H.H., Orler, B., Wilkes, G.L., Macromolecules 20, 1322 1987.10.1021/ma00172a026
[13] Noell, J.L.W., Wilkes, G.L., Mohanty, D.K., J.Appl.Polym.Sci. 40, 1177 1990.10.1002/app.1990.070400709
[14] Surivet, F., Lam, T.M., Pascault, J.P., Macromolecules 25, 5742 1992.10.1021/ma00047a027
[15] Rodrigues, D.E., Wilkes, G.L., J.Inorg.Organomet.Polym. 3, 197 1993.
[16] Coltrain, B.K., Landry, C.J.T., Oreilly, J.M., Chamberlain, A.M., Rakes, G.A., Sedita, J.S., Kelts, L.W., Landry, M.R., Long, V.K., Chem. Mater. 5 (N°10), 1445 (1993).10.1021/cm00034a014
[17] Landry, C.J.T., Coltrain, B.K., Fitzgerald, J.J., Long, V.K., Macromolecules 26, 3702 1993.10.1021/ma00066a032
[18] Landry, C.J.T., Coltrain, B.K., Wesson, J.A., Zumbulyadis, N., Lippert, J.L., Polymer 33, 1496 1992.10.1016/0032-3861(92)90127-I
[19] Shang, S.W., Williams, J.W., Söderholm, K.J.M., J.Mater.Sci. 27, 4949 1992.10.1007/BF01105259
[20] Shang, S.W., Williams, J.W., Stöerholm, K.J.M., J.Mater.Sci. 29, 2406 1994.10.1007/BF00363434
[21] Amiel, C., Sebille, B., J.Colloid Interf.Sci. 149, 481 1992.10.1016/0021-9797(92)90435-O
[22] Suzuki, F., Nakane, K., Piao, J.S., J.Mater.Sci. 31, 1335 1996.10.1007/BF00353114
[23] Ahmad, Z., Sarwar, M.I., Mark, J.E., J.Mater.Chem. 7, 259 1997.
[24] Rehman, H.U., Sawar, M.I., Ahmad, Z., Krug, H., Schmidt, H., J.Non-Cryst.Solids 211, 105 1997.10.1016/S0022-3093(96)00614-X
[25] Yamada, N., Yoshinaga, I., Katayama, S., J.Mater.Chem. 7(8), 1491 (1997).
[26] Kaddami, H., Surivet, F., Gérard, J.F., Lam, T.M., Pascault, J.P., J.Inorg.Organomet.Polym. 4, 183 1994.10.1007/BF01036542
[27] Wang, B., Wilkes, G.L., Hedrick, J.C., Liptak, S.C., McGrath, J.E., Macromolecules 24, 3449 1991.10.1021/ma00011a063
[28] Kumar, N.D., Ruland, G., Yoshida, M., Lal, M., Bhawalkar, J., Prasad, P.N., Mat.Res.Soc.Symp.Proc 435, 535 1996.10.1557/PROC-435-535
[29] Li, W.H., Hamielec, A.E., Crowe, C.M., Polymer 30, 1513 1989.
[30] Linsebigler, A.L., Lu, G., Yates, J.T., Chem. Rev. 95, 735 1995.10.1021/cr00035a013

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed