Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-19T04:39:12.750Z Has data issue: false hasContentIssue false

Synthesis of Responsive Polymer Brushes on Magnetic Nanoparticles

Published online by Cambridge University Press:  13 November 2013

Kamlesh J. Suthar
Affiliation:
Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL – 60439
Joseph E. Mowat
Affiliation:
Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL – 60439 Department of Mechanical and Aeronautical Engineering, Western Michigan University, 1903, West Michigan Avenue, Kalamazoo, MI - 49008
Shankar Balasubramanian
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL – 60439
Muralidhar K. Ghantasala
Affiliation:
Department of Mechanical and Aeronautical Engineering, Western Michigan University, 1903, West Michigan Avenue, Kalamazoo, MI - 49008
Derrick C. Mancini
Affiliation:
Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL – 60439
Get access

Abstract

We report a simple synthesis technique to attached poly(N-isopropylacrylamide) on magnetic nanoparticles. Fe3O4 magnetic nanoparticles were prepared using co-precipitation method. Nearly monodisperse nanoparticles were separated by terminating surface of Fe3O4 with dopamine followed by careful centrifugation and decantation. NHS/EDC coupling chemistry was employed to attached the carboxylic acid terminated poly(N-isopropylacrylamide) to amine end of dopamine on surface of the magnetic particles. Analysis of the polymer brush layers was conducted using UV-Vis spectroscopy, ATR−FTIR, and Transmission electron microscopy techniques. The magnetic property was investigated using direct current superconducting quantum interference device (DC-SQUID) method.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Elaissari, A. and Bourrel, V., J. Magn. Magn. Mater. 225 (1–2), 151 (2001).CrossRefGoogle Scholar
Liu, T., Hu, S., Liu, D. and Chen, S., Langmuir 22 (14), 5974 (2006).Google Scholar
Moffat, B., Reddy, G., McConville, P., Hall, D., Chenevert, T., Kopelman, R., Philbert, M., Weissleder, R., Rehemtulla, A. and Ross, B., Mol. Imaging. 2 (4), 324 (2003).CrossRefGoogle Scholar
Choi, H., Choi, S. R., Zhou, R., Kung, H. F. and Chen, I. W., Academic Radiology 11 (9), 996 (2004).Google Scholar
Yoshida, R. and Okano, T., in Biomedical Applications of Hydrogels Handbook, edited by Ottenbrite, R. M., Park, K. and Okano, T. (Springer New York, 2010), pp. 19.Google Scholar
Ramanujan, R. and Lao, L., Smar. Mat. St. 15 (4), 952 (2006).CrossRefGoogle Scholar
Ferrari, M., Nature Reviews Cancer 5 (3), 161 (2005).Google Scholar
Koo, Y. E. L., Reddy, G. R., Bhojani, M., Schneider, R., Philbert, M. A., Rehemtulla, A., Ross, B. D. and Kopelman, R., Adv. Drug. Deliver. Rev. 58 (14), 1556 (2006).CrossRefGoogle Scholar
Tabatabaei, S. N., Lapointe, J. and Martel, S., presented at the Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, 2010.Google Scholar
Rajh, T., Chen, L. X., Lukas, K., Liu, T., Thurnauer, M. C. and Tiede, D. M., J. Phys. Chem. B 106 (41), 10543 (2002).CrossRefGoogle Scholar
Xu, C., Xu, K., Gu, H., Zheng, R., Liu, H., Zhang, X., Guo, Z. and Xu, B., J. Am. Chem. Soc.126(32), 9938 (2004).CrossRefGoogle Scholar
Xie, J., Xu, C., Xu, Z., Hou, Y., Young, K. L., Wang, S. X., Pourmand, N. and Sun, S., Chem. of Mater. 18 (23), 5401 (2006).CrossRefGoogle Scholar
Xie, J., Xu, C., Kohler, N., Hou, Y. and Sun, S., Adv. Mater. 19 (20), 3163 (2007).CrossRefGoogle Scholar