Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T00:21:57.883Z Has data issue: false hasContentIssue false

Synthesis of New Nitrides Using Solid State Oxide Precursors

Published online by Cambridge University Press:  22 February 2011

Joel D. Houmes
Affiliation:
Massachusetts Institute of Technology, Department of Chemistry, Cambridge, MA 02139
David S. Bem
Affiliation:
Massachusetts Institute of Technology, Department of Chemistry, Cambridge, MA 02139
Hans-Conrad Zur Loye
Affiliation:
Massachusetts Institute of Technology, Department of Chemistry, Cambridge, MA 02139
Get access

Abstract

Several novel transition metal nitrides were synthesized via ammonolysis of solid state oxide precursors at temperatures ranging from 700°C-900°C and reaction times ranging from 12 hours to 4 days. Both intermetallic nitrides, Fe3Mo3N and Co3Mo3N, and ionic/covalent nitrides, FeWN2, MnWN2, Ta5N6 and Nb5N6, were prepared by this method. The products were characterized by powder X-ray diffraction and their structures were determined by powder X-ray Rietveld refinement. The intermetallic nitrides were found to be isostructural with the eta-carbide structure, Fe3W3C, while the ionic/covalent nitrides have layered structures, with metals in octahedral and trigonal prismatic coordination environments. Two polymorphs of the MnWN2 composition, α-MnWN2 and β-MnWN2, were isolated after ammonolysis at 700°C and 800°C, respectively. While the alpha phase can be converted into the beta phase by heating to 800°C under ammonia, annealing the beta phase at 700°C did not result in a structural transformation. Magnetic measurements show that FeWN2 orders antiferromagnetically at 45K. The magnetic ordering temperature was confirmed by M6ssbauer spectroscopy. All the other nitrides were paramagnetic down to 5K. Conductivity measurements show that FeWN2 and MnWN2 are metallic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. DiSalvo, F. J., Science 247, 649655 (1990).Google Scholar
2. Volpe, L., Boudart, M., J. Solid State Chem. 59, 332347 (1985).Google Scholar
3. Oyama, T. S., J. Solid State Chem. 96, 442445 (1992).Google Scholar
4. Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
5. Shakelford, J. F., Introduction to Materials Science for Engineers (Macmillan, New York, 1988).Google Scholar
6. Goldschmidt, H. J., in Interstitial Alloys (Plenum Press, New York, 1967) pp. 214244.Google Scholar
7. Kugler, E. L., McCandlish, L. E., Jacobson, A. J., Chianelli, R. R.,. United States Patent, #5,138,111, (1992),Google Scholar
8. Levy, R. B., Boudart, M., Science 181, 547549 (1973).Google Scholar
9. Volpe, L., Boudart, M., Catal. Rev.-Sci. Eng. 27, 515538 (1985).Google Scholar
10. Fluck, F. W., Geserich, H. P., Politis, C., phys. stat. sol. (b) 112, 193 (1982).Google Scholar
11. Perry, A. J., Georgson, M., Sproul, W. D., Thin Solid Films 157, 255 (1988).Google Scholar
12. Glasson, D. R., Jayaweera, S. A. A., J. Appl. Chem. 18, 6577 (1968).Google Scholar
13. Elder, S. H., DiSalvo, F. J., Doerrer, L. H., Chem. Mater. 4, 928937 (1992).Google Scholar
14. Vennos, D. A., DiSalvo, F. J., J. Solid State Chem. 98, 318322 (1992).Google Scholar
15. Gudat, A., Kniep, R., Rabenau, A., Thermochim. Acta 160, 4956 (1990).Google Scholar
16. LaDuca, R. L., Wolczanski, P. T., Inorg. Chem. 31, 13111313 (1992).Google Scholar
17. Wiley, J. B., Kaner, R. B., Science 255, 10931097 (1992).Google Scholar
18. Zachwieja, U., Jacobs, H., Eur. J. Solid State Inorg. Chem. 28, 10551062 (1991).Google Scholar
19. Brokamp, T., Jacobs, H., J. Alloys Compd. 176, 4760 (1991).Google Scholar
20. Holl, M. M. B., Wolczanski, P. T., Duyne, G. D. Van, J. Am. Chem. Soc. 112, 79897994 (1990).Google Scholar
21. Chem, M. Y., Vennos, D. A., DiSalvo, F. J., J. Solid State Chem. 96, 415425 (1992).Google Scholar
22. Cordier, G., Höhn, P., Kniep, R., Rabenau, A., Z. anorg. allg. Chem. 591, 5866 (1990).Google Scholar
23. Bem, D. S., Gibson, C. P., Loye, H.-C. zur, Chem. Mater. 5, 397 (1993).Google Scholar
24. Bern, D. S., Loye, H.-C. zur, J. Solid State Chem. 104, 467 (1993).Google Scholar
25. Bern, D. S., Houmes, J. D., Loye, H.-C. zur, Ternary Nitride Synthesis: Ammonolysis of Ternary Oxide Precursors, Rouxels, J., Eds., Soft Chemistry Routes to New Materials (Trans Tech Publications, Universite de Nantes, 1993), pp. in press.Google Scholar
26. Höhn, P., Kniep, R., Z. Naturforsch. 47, 477481 (1992).Google Scholar
27. Gudat, A., Kniep, R., J. Alloys Compd. 179, 333338 (1992).Google Scholar
28. Winter, C. H., Sheridan, P. H., Lewkebandara, T. S., Heeg, M. J., Proscia, J. W., J. Am. Chem. Soc. 114, 10951097 (1992).Google Scholar
29. Ross, C. B., Wade, T., Crooks, R. M., Chem. Mater. 3, 768771 (1991).Google Scholar
30. Chorley, R. W., Lednor, P. W., Adv. Mater. 3, 474485 (1991).Google Scholar
31. Gudat, A., Kniep, R., Rabenau, A., Bronger, W., Ruschewitz, U., J. Less-Common Met. 161, 3136 (1990).Google Scholar
32. Jaggers, C. H., James, N. M., Stacy, A. M., Chem. Mater. 2, 150157 (1990).Google Scholar
33. Larson, A. C., Dreele, R. B. Von,. Los Alamos National Laboratory, Los Alamos, NM 87545, 1985-1990),Google Scholar
34. Kuo, K., Acta Metallurgica 1, 301304 (1953).Google Scholar
35. Villars, P., Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases 1985).Google Scholar
36. Daams, J. L. C., Villars, P., Vucht, J. H. N. van, Atlas of Crystal Structure Types for Intermetallic Phases 1991).Google Scholar
37. Gilles, J.-C., Compt. Rend. Acad. Sci. Paris 266 C, 546 (1968).Google Scholar
38. Terao, N., J. Less-Common. Met. 23, 159 (1971).Google Scholar