Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T19:00:30.762Z Has data issue: false hasContentIssue false

Synthesis of Nanocomposite thin film Ti/Al Multilayers and Ti-Aluminides

Published online by Cambridge University Press:  10 February 2011

R. Banerjee
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
X. D. Zhang
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
S. A. Dregia
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
H. L. Fraser
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
Get access

Abstract

Nanocomposite Ti/Al multilayered thin films have been deposited by magnetron sputtering. These multilayers exhibit interesting structural transitions on reducing the layer thickness of both Ti and Al. Ti transforms from its bulk stable hep structure to fee and Al transforms from fee to hep. The effect of ratio of Ti layer thickness to Al layer thickness on the structural transitions has been investigated for a constant bilayer periodicity of 10 nm by considering three different multilayers: 7.5 nm Ti / 2.5 nm Al, 5 nm Ti / 5 nm Al and 2.5 nm Ti / 7.5 nm Al. The experimental results have been qualitatively explained on the basis of a thermodynamic model. Preliminary experimental results of interfacial reactions in Ti/Al bilayers resulting in the formation of Ti-aluminides are also presented in the paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chan, K. S. and Kim, Y. W., Acta Metall. Mater., 43(2), 439 (1995).Google Scholar
2. Ahuja, R. and Fraser, H. L., J. Elee. Mater., 23(10), 1027 (1994).Google Scholar
3. Ahuja, R. and Fraser, H. L., JOM,Google Scholar
4. Ahuja, R. and Fraser, H. L., Mat. Res. Soc. Symp. Proc. 317, 479 (1994).Google Scholar
5. Banerjee, R., Ahuja, R. and Fraser, H. L., Phys. Rev. Lett. 76(20), 3778 (1996).Google Scholar
6. Redfield, A. C. and Zangwill, A. M., Phys. Rev., B34(2), 1378 (1986).Google Scholar
7. Dregia, S. A., Banerjee, R. and Fraser, H. L., submitted to Scripta met. & mat.Google Scholar
8. Banerjee, R., Zhang, X. D., Asta, M., Quong, A. A., Dregia, S. A. and Fraser, H. L., submitted to Phys. Rev. Lett.Google Scholar
9. Ahuja, R., Ph. D. Thesis, The Ohio State University, 1994.Google Scholar
10. Asta, M. and de Fontaine, D., J. Mater. Res., 8(10), 2554 (1993)Google Scholar
11. Asta, M. and Quong, A. A., private communicationGoogle Scholar
12. McCullough, C., Valenicia, J. J., Levi, C. G. and Mehrabian, R., Acta Metall. Mater., 37 1321(1989).Google Scholar
13. Colgan, E. G., Mat. Sci. Rep., 5, 1(1990).Google Scholar
14. Gosele, U. and Tu, K. N., J. Appl. Phys., 53, 3252 (1982).Google Scholar