Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T08:19:21.168Z Has data issue: false hasContentIssue false

Synthesis of Iron-containing Nanomaterials by “Greener” Methods and Their Use for Disinfection of Water

Published online by Cambridge University Press:  07 November 2013

Boris I. Kharisov
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail bkhariss@mail.ru
Betsabee Olvera Pérez
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail bkhariss@mail.ru
Edgar G. de Casas Ortiz
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail bkhariss@mail.ru
Oxana V. Kharissova
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail bkhariss@mail.ru
María del Rayo Camacho Corona
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail bkhariss@mail.ru
Victor M. Jiménez Pérez
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail bkhariss@mail.ru
Rasika Dias
Affiliation:
The University of Texas at Arlington, TX, USA.
Get access

Abstract

Methods of “green” synthesis of nanoparticles of elemental iron (zero-valent iron, NZVI), its oxides and hydroxides using natural products are reviewed. In particular, the use of biological agents such as extracts of various plants, tea, soya, table sugar and glucose, as reductants and as capping agents is shown. The techniques involved are simple, environmentally friendly and generally one-pot processes. Water disinfection using iron nanomaterials against viruses and bacteria is also examined.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kharisov, Boris I., Dias, Rasika, Jimenez-Perez, Victor Manuel, Kharissova, Oxana V., Olvera Perez, Betsabee, Muñoz Flores, Blanca. Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advances, 2012, 2 (25), 93259358.CrossRefGoogle Scholar
Li, X.Q.; Elliott, D.W.; Zhang, W. Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 2006, 31, 111122.CrossRefGoogle Scholar
Hofmann-Amtenbrink, M.; von Rechenberg, B.; Hofmann, H. Superparamagnetic nanoparticles for biomedical applications. In: Nanostructured Materials for Biomedical Applications, 2009, Transworld Research Network, Kerala, India.Google Scholar
Mahmoudi, M.; Sahraian, M. A.; Shokrgozar, M. A.; Laurent, S. Superparamagnetic Iron Oxide Nanoparticles: Promises for Diagnosis and Treatment of Multiple Sclerosis. ACS Chem. Neurosci. 2011, 2, 118140.CrossRefGoogle ScholarPubMed
Huber, D. L. Iron nanoparticles, in: Dekker encyclopedia of nanoscience and nanotechnology, Schwarz, J. A.; Contescu, C. I.; Putyera, K., Eds., 2008, vol. 3, pp. 16811687, CRC Press, Taylor and Francis Group, Boca Raton, FL.Google Scholar
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 2008, 42, 45914602.CrossRefGoogle ScholarPubMed
Hoag, G. E.; Collins, J. B.; Varma, R. S.; Nadagouda, M. Green synthesis of metal nanoparticles using plant extracts. PCT Int. Appl. 2009, WO 2009140694 A2 20091119.Google Scholar
Kharissova, Oxana V., Rasika Dias, H. V., Kharisov, Boris I., Olvera Pérez, Betsabee, Jiménez Pérez, Victor M.. The greener synthesis of nanoparticles. Trends in Biotechnology, 2013, 31(4), 240248.CrossRefGoogle ScholarPubMed
Kipkurgat Erick Tanui. Green Synthesis and Characterization of Iron Nanoparticles. http://chemistry.uonbi.ac.ke.Google Scholar
Hoag, G. E.; Collins, J. B.; Holcomb, J. L.; Hoag, J. R.; Nadagouda, M. N.; Varma, R. S. Journal of Materials Chemistry, 2009, 19 (45), 86718677.CrossRefGoogle Scholar
Nadagouda, M. N.; Castle, A. B.; Murdock, R. C.; Hussain, S. M.; Varma, R. S. Green Chem., 2010, 12, 114122.CrossRefGoogle Scholar
Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyaci, E.; Eroglu, A. E.; Scott, T. B.; Hallam, K. R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 2011, 172 (1), 258266.CrossRefGoogle Scholar
Cai, Y.; Shen, Y.; Xie, A.; Li, S.; Wang, X. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2010, 322 (19), 29382943.CrossRefGoogle Scholar
Lu, W.; Shen, Y.; Xie, A.; Zhang, W. Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2010, 322 (13), 18281833.CrossRefGoogle Scholar
Laokul, P.; Maensiri, S. Aloe vera solution synthesis and magnetic properties of Ni-Cu-Zn ferrite nanopowders. J. Optoelectronics and Adv. Mater., 2009, 11 (6), 857862.Google Scholar
Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. Journal of Membrane Science, 2011, 379 (1-2), 131137.CrossRefGoogle ScholarPubMed
Shi, Chunjian; Pomeroy, Daniel E.; Chiu, Pei C. Application of nanoscale zerovalent iron to decentralized drinking water systems. Abstracts of Papers, 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011, ENVR-403.Google Scholar
Lee, C.; Kim, J.Y.; Lee, W.Il; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli. Environmental Science & Technology, 2008, 42(13), 49274933.CrossRefGoogle Scholar
Li, Z.; Greden, K.; Alvarez, P.J.J.; Gregory, K.B.; Lowry, G.V. Adsorbed Polymer and NOM Limits Adhesion and Toxicity of Nano Scale ZeroValent Iron to E. coli. Environmental Science & Technology, 2010, 44(9), 34623467.CrossRefGoogle Scholar
Li, X.; Wang, J.; Gutierrez, L.A.; Nguyen, T.H.; Economy, J. Iron oxide nanoparticle coating on glass substrates for both arsenic and MS2 virus removal. Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environmental Chemistry, 2008, 48(1), 444446.Google Scholar
Kim, J.-Y.; Lee, C.-H.; Love, D.C.; Sedlak, D.L.; Yoon, J.-Y.; Nelson, K.L. Inactivation of MS2 Coliphage by Ferrous Ion and Zero-Valent Iron Nanoparticles. Environmental Science & Technology, 2011, 45(16), 69786984.CrossRefGoogle ScholarPubMed
Marsalek, B.; Jancula, D.; Marsalkova, E.; Mashlan, M.; Safarova, K.; Tucek, J.; Zboril, R. Multimodal Action and Selective Toxicity of Zerovalent Iron Nanoparticles against Cyanobacteria. Environmental Science & Technology, 2012, 46(4), 23162323.CrossRefGoogle ScholarPubMed
Dong, M.; Wang, X.; Huang, F.; Jin, Z.; Li, T. Toxicity of Fe0 nanoparticles on the denitrifying bacteria-Alcaligenes eutrophus. Advanced Materials Research, 2012, 343-344(Pt. 2, Materials for Environmental Protection and Energy Application), 889–894.Google Scholar
Nangmenyi, G.; Li, X.; Mehrabi, S.; Mintz, E.; Economy, J. Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water. Materials Letters, 2011, 65(8), 11911193.CrossRefGoogle Scholar
Nangmenyi, G.N.; Mintz, E.; Li, X.; Nguyen, H.; Economy, J. Antibacterial activity of a novel material system consisting of iron oxide and Ag nanoparticles on a fiberglass substrate. Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environmental Chemistry, 2008, 48(1), 708713.Google Scholar
Zhang, X.; Niu, H.; Yan, J.; Cai, Y. Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2011, 375(1-3), 186192.CrossRefGoogle Scholar
Han, J.; Zhang, S.-j.; Lu, Z.-g.; Wang, Y.-j. Doping Fe3+ to nano-Ag TiO2 for photocatalytic performance improvement. Yingyong Guangxue, 2010, 31(5), 718723.Google Scholar
Chen, Z. Water treatment device employing nano-neodymium-iron-boron pipe containing zinc oxide and silver oxide, and steam shower room equipped with the same with antiscaling and descaling effects. 2010, CN 101671071.Google Scholar