Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T03:00:07.262Z Has data issue: false hasContentIssue false

Synthesis of Buried Silicon Compounds Using Ion Implantation

Published online by Cambridge University Press:  26 February 2011

Alice E. White
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
K. T. Short
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
R. C. Dynes
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
J. M. Gibson
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
R. Hull
Affiliation:
AT&T Bell Laboratories Murray Hill, NJ 07974
Get access

Abstract

Ion implantation is widely used for doping semiconductors at low concentration, but, with the advent of a new generation of high current implanters, synthesizing new materials rather that simply doping them has become feasible. This technique has been successfully applied to fabricating silicon-on-insulator (SOI) structures with oxygen and nitrogen for several years. Since we are interested in understanding the mechanisms of formation of these layers, we have concentrated on sub-stoichiometric implantation doses of oxygen where it is easier to observe the coalescing layer. In order to determine whether this process of compound formation is more general, our studies were expanded to include implantation of the transition metals. Here, elevated substrate temperatures are necessary to minimize Si surface damage. The resulting disilicide layers are of remarkably high quality: they are single crystals in registry with the silicon wafer and they have better residual resistivities than comparable UHV-reacted silicides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tung, R. T., Gibson, J. M., and Poate, J. M., Appl. Phys. Lett. 42, 888 (1983); B. D. Hunt, J. Lewis, E. L. Hall, L. G. Turner, L. J. Schowalter, M. Okamoto, and S. Hashimoto, Mater. Res. Soc. Symp. Proc. 56, 151 (1986); R. T. Tung, J. M. Gibson, and A. F. J. Levi, Appl. Phys. Lett. 48, 1264 (1986).CrossRefGoogle Scholar
[2] Hemment, P. L. F., Mater. Res. Soc. Symp. Proc. 53, 207 (1986) and references therein.Google Scholar
[3] Alice White, E., Short, K. T., Batstone, J. L., Jacobson, D. C., Poate, J. M., and West, K. W., Appl. Phys. Lett. 50, 19 (1987); Alice E. White, K. T. Short, L. N. Pfeiffer, and K. W. West, Mater. Res. Soc. Symp. Proc. 93, 131 (1987); Alice E. White, K. T. Short, L. N. Pfeiffer, K. W. West, and J. L. Batstone, Mater. Res. Soc. Symp. Proc. 74, 585 (1987).Google Scholar
[4] Alice White, E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50, 95 (1987).CrossRefGoogle Scholar
[5] Alice White, E., Short, K. T., Dynes, R. C., and Garno, J. P., and Gibson, J. M., Mater. Res. Soc. Symp. Proc. 74, 481 (1987).Google Scholar
[6] SIMS performed using a Cameca IMS -3F. The primary beam was 6KV O+ with a beam current of 500 nA. In order to separate the Co, a high mass resolution mode (ΔM/M = 3457.0) was used.Google Scholar
[7] Hensel, J. C., Tung, R. T., Poate, J. M., and Unterwald, F. C., Appl. Phys. Lett. 44, 913 (1984).Google Scholar
[8] Geld, P. V. and Sidorenko, F. A., Silitsidi Perekhodnikh Metallow Chervertogo Perioda (Izdatelstvo “Metallurgiya”, Moscow, 1971). J. C. Hensel, Mater. Res. Soc. Symp. Proc. 54, 499 (1986).Google Scholar
[9] Vandenberg, J. M., White, Alice E., Short, K. T., and Gibson, J. M., to be published.Google Scholar
[10] Sanchez, F. H., Namavar, F., Budnick, J. I., Fasihudin, A., and Hayden, H. C., Mater. Res. Soc. Symp. Proc. 51, 439 (1986).Google Scholar
[11] Campisi, G. J., Dietrich, H. B., Delfino, M., and Sadana, B. K., Mater. Res. Soc. Symp. Proc. 54, 747 (1986).CrossRefGoogle Scholar
[12] Madakson, P. B., Clark, G. C., Leguoues, F., and Baglin, J. E. E., these proceedingsGoogle Scholar
[13] Ishiwara, Hiroshi, Saitoh, Shuichi, and Hikosaka, Kohki, Jap. J. Appl. Phys. 20, 843 (1981).CrossRefGoogle Scholar
[14] Gurvitch, M., Levi, A. F. J., Tung, R. T., and Nakahara, S., Appl. Phys. Lett. 51, 311 (1987).Google Scholar
[15] White, Alice E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Mater. Res. Soc. Symp. Proc. 98, 93 (1987).CrossRefGoogle Scholar
[16] Shinoda, Daizaburo, Asanabe, Sizuo, and Sasaki, Yozo, J. Phys. Soc. Jpn. 19, 269 (1964); I. Nishida and T. Sakati, J. Phys. Chem. Solids 39, 499 (1978).CrossRefGoogle Scholar
[17] Tung, R. T., Hellman, F., Gibson, J. M., and Boone, T., Mater. Res. Soc. Symp. Proc. 91, 451 (1987).CrossRefGoogle Scholar
[18] d'Heurle, F. M., Anfiteatro, D. D., Deline, V. R. and Finstad, T. G., Thin Solid Films 128, 107 (1985); T. G. Finstad et al., Thin Solid Films 185, 229 (1986).Google Scholar