Skip to main content Accessibility help
×
Home

Synthesis of Bulk High Spin Density Charge Transfer Complexes for Organic Magnets

  • Long Y. Chiang (a1), Ravindra B. Upasani (a1) (a2), D. P. Goshorn (a1) and P. Tindall (a3)

Abstract

We describe a synthetic approach to the preparation of high spin density organic solid as a probe to organic ferromagnetism utilizing an external doping process to achieve a molecular sequence of alternate donors and acceptors in different spin states for, in principle, the ground state ferrimagnets. In contrast to the irreversibility of electron oxidations of many triaminobenzene derivatives, we found that, by substituting three hindered diisopropylamino groups on benzene, stable monocationic TDIAB radicals can be obtained. In the case of HDMAB its cationic radicals can be stabilized in a strong acid medium. The observed bulk spin densities of 0.18 — 0.23 spins 1/2 per donor molecule in TDIAB-PF6 and HDMAB-PF6 solids are significant comparing to the diamagnetic properties normally obtained in solids of simple cationic salts of planar organic donor molecules. The results imply that a small degree of molecular spin separation due to the steric effect can readily increase sharply the paramagnetic spin density of solids. We also found that the introduction of arsenic pentafluoride into molecular crystals disintegrates the long range order of crystal without rearranging the molecular stacking sequence in HMT complexes. Arsenic pentafluoride serves as not only the oxidant, but also the physical molecular separator. That results in a molecular spin separation of triplet dicationic HMT spins from each other at high doping level. This concept of molecular spin separation explains the observation of static magnetic data with an observed high spin density of many doped HMT charge transfer complexes. Without the molecular spin separation, the segregated-stack complexes, such as HMT-(AsF5.5)3.4 and HMT-DDQ-(AsF5.5)4.1, should instead give a low net bulk spin density with no triplet resonance after the intermolecular spin exchanges resemble to those observed in the case of HMT+2(CIO4)2 crystals.

Copyright

References

Hide All
1. McConnell, H., Proc. R. A. Welch Found. Conf. 11, 144 (1967);
McConnell, H., J. Chem. Phys. 39, 1910 (1963).
2. Ovchinnikov, A. A., Dokl. Akad. Nauk. SSSR 225, 928 (1977);
Ovchinnikov, A. A., Theor. Chim. Acta. 47, 297 (1978);
Klein, D. J. and Alexander, S. A., Studies in Phys. and Theo. Chem. 51, 404 (1987).
3. Buchachenko, A. L., Dokl. Akad. Nauk. SSSR 244, 1146 (1979);
Mataga, N., Theoret. Chim. Acta. 10, 372 (1968);
Miller, J. S., Epstein, A. J., and Reiff, W. M., Chem. Rev. 88, 201 (1988).
4. Breslow, R., Pure & Appl. Chem. 54, 927 (1982);
Breslow, R., Jaun, B., Kluttz, R., Xia, C., Tetrahedron 38, 863 (1982);
LePage, T. J. and Breslow, R., J. Am. Chem. Soc., 109, 6412 (1987).
5. Chiang, L. Y., Johnston, D. C., Goshorn, D. P. and Bloch, A. N., Synth. Met. 27, B639 (1988);
Chiang, L. Y., Johnston, D. C., Goshorn, D. P. and Bloch, A. N., J. Am. Chem. Soc. 111, 1925 (1989).
6. Torrance, J. B., Bagus, P. S., Johannsen, I., Nazzal, A. I., Parkin, S. S. and Batail, P., J. Appl. Phys. 63, 2962 (1988).
7. Awaga, K., Sugano, T. and Kinoshita, M., Solid State Commun. 57, 453 (1986);
Sugawara, T., Murata, S., Kimura, K. and Iwamura, H., J. Am. Chem. Soc. 107, 5293 (1985);
Dormann, E., Nowak, M. J., Williams, K. A., Angus, R. O. and Wudl, F., J. Am. Chem. Soc. 109, 2594 (1987).
8. Sugawara, T., Bandow, S., Kimura, K., and Iwamura, H., J. Am. Chem. Soc., 1984, 106, 6450;
Sugawara, T., Murata, S., Kimura, K., and Iwamura, H., J. Am. Chem. Soc., 1985, 107, 5293.
9. Braun, D., Pure Appl. Chem. 30, 41 (1972).
10. Chiang, L. Y. and Thomann, H., J. Chem. Soc., Chem. Commun. 172 (1989).
11. Backer, H. J. and Baan, V. D., Rec. Trav. Chim. 56, 1175 (1937).
12. Effenberger, F., Auerand, E. Fischer, P., Chem. Ber. 152,1440 (1970).
13. Thomaides, J., Maslak, P. and Breslow, R., J. Am. Chem. Soc., 110, 3970 (1988).
14. Bechgaard, K. and Parker, V. D., J. Am. Chem. Soc. 94, 4749 (1972).
15. Chiang, L. Y., Johnston, D. C., Stokes, J. P. and Bloch, A. N., Synth. Met. 19, 697 (1987).
16. Chiang, L. Y. and Goshorn, D. P., Mol. Cryst. Liq. Cryst. 176, 229 (1989).
17. The data of Figure 2 were obtained by D. C. Johnston of Exxon Research and Engineering Co.

Synthesis of Bulk High Spin Density Charge Transfer Complexes for Organic Magnets

  • Long Y. Chiang (a1), Ravindra B. Upasani (a1) (a2), D. P. Goshorn (a1) and P. Tindall (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed