Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-26T12:26:48.641Z Has data issue: false hasContentIssue false

Synthesis of boron nitride nanolayers encapsulating iron fine particles and boron nitride nanotubes

Published online by Cambridge University Press:  01 February 2011

Hisato Tokoro
Affiliation:
Hitachi Metals, Ltd., Advanced Electronics Research Laboratory, Mikajiri 5200, Kumagaya, Saitama, 360–0843, Japan
Shigeo Fujii
Affiliation:
Hitachi Metals, Ltd., Advanced Electronics Research Laboratory, Mikajiri 5200, Kumagaya, Saitama, 360–0843, Japan
Takeo Oku
Affiliation:
Osaka University, Nanoscience and Nanotechnology Center, Institute of Scientific and Industrial Research, Mihogaoka 8–1, Ibaraki, Osaka, 567–0047, Japan
Shunsuke Muto
Affiliation:
Nagoya University, Department of Nuclear Engineering Graduate School of Engineering, Furo-Cho, Chikusa-ku, Nagoya, 464–8603, Japan
Get access

Abstract

Boron nitride (BN) nanolayers encapsulating iron (Fe) fine particles have been synthesized by annealing mixtures of hematite (α-Fe2O3) and boron powders at 1373 K for 2 hours in nitrogen atmosphere. The Fe particles had an average diameter of ∼300 nm with BN nanolayers coating of ∼10 nm. The α-Fe2O3 was transformed into Fe and then Fe-B on a process of annealing. The Fe-B was decomposed into Fe and BN, and consequently Fe particles coated with BN nanolayers were synthesized. They showed soft magnetic properties with coercivity of 1.5 kA/m. The BN nanolayers encapsulation was effective on improving oxidation resistance. BN nanotubes with diameter of ∼100 nm were also synthesized as a resultant product by this method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kruis, F. E., Fissan, H., Peled, A., J. Aerosol Sci., 29, 511 (1998).Google Scholar
2. Ding, J., Miao, W. F., McCormick, P. G., Street, R., Appl. Phys. Lett., 67, 3804 (1995).Google Scholar
3. Liu, Q., Xu, Z., Finch, J. A., Egerton, R., Chem. Mater., 10, 3936 (1998).Google Scholar
4. Yoshida, Y., Shida, S., Ohsuna, T., Shiraga, N., J. Appl. Phys., 76, 4533 (1994).Google Scholar
5. Zhang, Z. D., Zheng, J. G., Skorvanek, I., Wen, G. H., Kovac, J., Wang, F. W., Yu, J. L., Li, Z. J., Dong, X. L., Liu, S. R., Zhang, X. X., J. Phys. Condens. Matter., 13, 1921 (2001).Google Scholar
6. Subramoney, S., Adv. Mater., 10, 1157 (1998).Google Scholar
7. Hirano, T., Oku, T., Suganuma, K., Diamond and Related Mater., 9, 476 (2000).Google Scholar
8. Oku, T., Kuno, M., Kitahara, H., Narita, I., Int. J. Inorg. Mater., 3, 597 (2001).Google Scholar
9. Sun, S., Murray, C. B., J. Appl. Phys., 85, 4325 (1999).Google Scholar
10. Fung, K. K., Qin, B., Zhang, X. X., Mater. Sci. Eng. A, 286, 135 (2000).Google Scholar
11. Huo, K. F., Hu, Z., Hu, J. J., Xu, H., Wang, X. Z., Chen, Y., Lu, Y. N., J. Phys. Chem. B, 107, 11316 (2003).Google Scholar
12. Ahn, C. C. and Krivanek, O. L., EELS Atlas (1983), distributed by Gatan Inc.Google Scholar
13. Tang, C. C., Chapelle, M., Li, P., Liu, Y. M., Dang, H. Y., Fan, S. S., Chem. Phys. Lett., 342, 492 (2001).Google Scholar
14. Saito, Y., Maida, M., Matsumoto, T., Jpn. J. Appl. Phys., 38, 159 (1999).Google Scholar
15. Lourie, O., Jones, C., Bartlett, B., Gibbons, P., Ruoff, R., Buhro, W., Chem. Mater., 12, 1808 (2000).Google Scholar
16. Bourgeois, L., Bando, Y., Sato, T., J. Phys. D: Appl. Phys., 33, 1902 (2000).Google Scholar
17. Bando, Y., Ogawa, K., Golberg, D., Chem. Phys. Lett., 347, 349 (2001)Google Scholar