Skip to main content Accessibility help
×
Home

The Synthesis and Stability of Si1−yQy Alloys and Strained Layer Superlattices

  • S. S. Iyer (a1), K. Eberl (a1), M. S. Goorsky (a1), F. K. Legoues (a1), F. Cardone (a1) and B. A. Ek (a1)...

Abstract

We have synthesized Si1−yQy layers and strained layer superlattices on Si (100) with C concentrations of up to a few percent using Solid Source Molecular Beam Epitaxy. The presence of C even in small quantities is known to disrupt the epitaxy of Si. We show that under conditions of high Si flux for a given C/Si flux ratio, defect-free epitaxy results. However, exceeding a critical C/Si flux ratio leads to disruption of epitaxy, initially via twinning and subsequently by amorphous growth. Growth temperature also plays a significant role in preventing twinning and islanding. Low growth temperature also suppresses the precipitation of β-SiC and leads to the formation of pseudomorphic Si1−yQy random alloys. The layers are characterized by X-ray diffraction, Secondary Ion Mass spectroscopy, and Transmission Electron Microscopy. We have also studied the thermal stability of strained layer superlattices and find that the layers are stable to about 800°C (for y = 0.003). Between 800°C and 1000°C, the layers relax by interdiffusion. Above 1000°C, silicon carbide precipitation occurs and the carbide layers nucleate and grow at high C content regions of the film.

Copyright

References

Hide All
1 Iyer, S. S., Patton, G. L., Stork, J. M. C., Meyerson, B. S., and Harame, D. L., “Heterojunction Bipolar Transistors using Si-Ge alloys,” IEEE Trans. Electron. Dev. 36, 20432064 (1989).
2 Wright, S.L., Kroerner, H., and Inada, M., “Molecular beam epitaxial growth of GaP on Si,” J. Appl. Phys. 55, 29162927 (1984).
3 Kwark, Y. H. and Swanson, R. M., “N-type SIPOS and poly-silicon emitters,” Solid-State Electronics 30, 11211125 (1987).
4 Matsushita, T., Hayashi, H., Oh-Uchi, N., and Yamoto, H., “A SIPOS-Si heterojunction transistor,” Jap. J. Appl. Phys. (suppl.) 20, 7581 (1980).
5 Yablonovitch, E. and Gmitter, T., “A study of n+ -SIPOS:p-Si heterojunction emit ters,” IEEE Electron Device Lett. EDL-6, 597599 (1985).
6 Takahashi, M., Tabe, M., and Sakakibara, Y., “IV characteristics of oxygen-doped Si epitaxial film (OXSEF)/Si heterojunctions,” IEEE Electron Device Lett. EDL-8, 475476 (1987).
7 Sugii, T., Ito, T., Furumura, Y., Doki, M., Mieno, F., and Maeda, M., “β-SiC/Si heterojunction bipolar transistors with high current gain,” IEEE Electron Device Lett. 9, 8789 (1988).
8 Sasaki, K., Fukazawa, T., and Furukawa, S., “Micro-crystalline hetero-emitter with high efficiency for Si HBT,” in IEDM Tech. Dig. 1987, 186189 (1987).
9 Symons, J., Ghannam, M., Neugroschel, A., Nijs, J., and Mertens, R., “Silicon heterojunction bipolar transistors with amorphous and microcrystalline emitters,” Solid-State Electronics 30, 11431145 (1987).
10 Fujioka, H., Deguchi, T., Takasaki, K., and Takada, T., “An ECL gate array with Si HBTs,” in IEDM Tech. Dig. 1987, 574577 (1988).
11 Posthill, J. B., Rudder, R. A., Hattangady, S. V., Fountain, G. G., and Markunas, R. J., “On the feasability of growing dilute Si1−yCy epitaxial alloys,” Appl. Phys. Lett. 56 (8), 734736 (1990).
12 Sugii, T., Aoyama, T., and Ito, T., “Low-Temperature Growth of β-SiC by Gas- Source MBE,” J. Electrochem. Soc. 137, 989992 (1990).
13 Malik, R. J., Nothenberg, R. N., Schubert, E. F., walker, J. F., and Ryan, R.W., “Carbon Doping in MBE of GaAs from a heated graphite filament,” Appl. Phys. Lett. 53, 26612663 (1988).
14 Abbink, H. C., Broudy, R. M., and McCarthy, G. P., “Surface processes in the growth of Silicon on (111) silicon in Ultrahigh Vacuum,” J. Appl. Phys. 39, 46734681 (1968).

The Synthesis and Stability of Si1−yQy Alloys and Strained Layer Superlattices

  • S. S. Iyer (a1), K. Eberl (a1), M. S. Goorsky (a1), F. K. Legoues (a1), F. Cardone (a1) and B. A. Ek (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed