Skip to main content Accessibility help
×
Home

Synthesis and Lithium Intercalation Properties of a Layered Lithiated Manganese Oxide with Rancieite Type

  • F. Leroux (a1), D. Guyomard (a1) and Y. Piffard (a1)

Abstract

The 2D lithiated manganese oxide with Rancieite-type structure (lithium phyllomanganate), synthesized via a soft chemistry route (T≤60ºC) is hydrated at room temperature and can be dehydrated progressively by a thermal treatment. This compound and a series of samples obtained after annealing at different temperatures were characterized and studied for their electrochemical lithium intercalation properties. They are poorly crystallized, with however the advantage of a manganese oxidation state very close to 4, a mustto get high specific capacity. Their chemical characterization was achieved after gathering results obtained from complementary techniques such as AAS, redox titration, TGA and XPS measurements. Special care was taken for the chemical characterization of electrode compositions effectively used in the electrochemical cells.

Electrochemical lithium intercalation was systematically studied for the series of samples, when starting in charge or in discharge after assembly of the Li battery. The electrochemical behavior is discussed in relation with the manganese average oxidation state and the interlayer water content. Materials of the series showing the larger specific capacities were further examined on the application point of view, for their reversibility, cyclability and high rate capability upon Li intercalation.

This work shows that the anhydrous material which is obtained at 300ºC, with the composition Li0.42MnIII 0.20MnIV 0.8002.11, is a promising rechargeable layered manganese dioxide material.

Copyright

References

Hide All
1 Wittingham, M. S., Prog. Solid State Chem. 12, 41 (1978).
2 Desilvestro, J. and Haas, O., J. Electrochem. Soc. 137, 5C (1990).
3 Delmas, C., Lithium Batteries, Ed. Pistoia, G. (Elsevier, Industrial Chemistry Library, 1994) Vol.5, p. 457.
4 Golden, D. C., Dixon, J. B. and Chen, C. C., Clays and Clays Minerals, 34, 511 (1986).
5 Paterson, E., Bunch, J. L. and Clark, D. R., Clay Minerals, 21, 949 (1986).
6 Strobel, p. and Charenton, J-C., Rev. Chirn. Min. 23, 125 (1986).
7 Strobel, P., Charenton, J-C. and Lenglet, M., Rev. Chim. Min. 24, 199 (1987).
8 Ohzuku, T., Fukuda, H. and Hirai, T., Chemistry Express 2, 543 (1987).
9 Lubin, F., Lecerf, A., Broussely, M. and Labat, J., J. Power Sources 34, 161 (1991).
10 Rossow, M. H. and Thackeray, M. M., Mat. Res. Bull. 26, 463 (1991).
11 Rossow, M. H., Liles, D. C. and Thackeray, M. M., J. Solid State Chem., 104, 464 (1993).
12 Bach, S., Pereira-Ramos, J-P., Baffier, N. and Messina, R., Electrochim. Acta 36, 1595 (1991).
13 Goff, P. Le, Baffier, N., Bach, S., Pereira-Ramos, J-P. and Messina, R., Solid State Ionics 61, 309 (1993).
14 Capitaine, F., Gravereau, P. and Delmas, C., GFECI meeting (Montpellier, France, March 1994), Abstract p.57.
15 Ohzuku, T., Ueda, A. and Hirai, T., Chemistry Express 7, 193 (1992).
16 Reimers, J. N., Fuller, E.W., Rossen, E. and Dahn, J. R., J. Electrochem. Soc. 140, 3396 (1993).
17 Gummow, R. J., Liles, D.C. and Thackeray, M. M., Mat. Res. Bull. 28, 1249 (1993).
18 Davidson, I. J., MacMillan, R. S., and Murray, J. J., Proceedings of 7th International Meeting of Lithium Batteries (Boston, May 1994) Abstract II.B-26, p. 586, to be published.
19 Strobel, P., Solid State Ionics III, MRS Symposium Proceedings Vol. 293, p. 63 (1993).
20 Strobel, P. and Mouget, C., Mat. Res. Bull. 28, 93 (1993).
21 Cras, F. Le, Strobel, P. and Anne, M., Proceedings of 7th International Meeting of Lithium Batteries (Boston, May 1994) Abstract II-A-40, p. 480, to be published.
22 Richmond, W. E., Fleischer, M. and Mrose, M. E., Bull. Soc. fr. Minéral. Cristallogr. 92, 191 (1969).
23 Leroux, F., Guyomard, D. and Piffard, Y., Solid State Ionics, to be published.
24 Leroux, F., Guyomard, D. and Piffard, Y., Solid State Ionics, to be published.
25 Tsuji, M., Komarneni, S., Tamaura, Y. and Abe, M., Mat. Res. Bull. 27, 741 (1992).
26 Guyomard, D. and Tarascon, J-M., J. Electrochem. Soc. 140, 3071 (1993).
27 Guyomard, D. and Tarascon, J-M., Solid State Ionics 69, 222 (1994).
28 Giovanoli, R., Stähli, E. and Feitknecht, W., Helv. Chem. Acta 53, 209 (1970).
29 Goff, P. Le, Baffier, N., Bach, S. and Pereira-Ramos, J-P., J. Mater. Chem. 4, 875 (1994).
30 Vetter, K. J. and Jaeger, N., Electrochimica Acta 11, 401 (1966).
31 Shen, X. M. and Clearfield, A., J. Solid State Chem. 64, 270 (1986).
32 Oku, M., Hirokawa, K. and Ikeda, S., J. Electron Spectrosc. 7, 465 (1975).
33 Baltanas, M. A., Katzer, J. R. and Stiles, A. B., Acta Chim. Acad. Sci. Hung. 124, 341 (1987).
34 Zaki, M. I. and Kappenstein, C., Zeitschrift für Physikalishe Chemie 176, 97 (1992).
35 Richard, M. N., Fuller, E. W. and Dahn, J. R., Solid State Ionics 73, 81 (1994).
36 Basu, S. and Worell, W. L., Fast Ion Transport in Solids, edited by Vashita, P., Mundy, J. N. and Shenoy, G. K. (Elsevier North-Holland, Amsterdam 1979), p. 149.

Synthesis and Lithium Intercalation Properties of a Layered Lithiated Manganese Oxide with Rancieite Type

  • F. Leroux (a1), D. Guyomard (a1) and Y. Piffard (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed