Skip to main content Accessibility help

Synthesis and Characterization of Magnetic Iron Oxide Nanoparticles

  • Lingyan Wang (a1), Jin Luo (a1), Mathew M. Maye (a1), Quan Fan (a1), Qiang Rendeng (a1), Jian Q. Wang (a2), Mark H. Engelhard (a3), Chongmin Wang (a3), Yuehe Lin (a3), Eric I. Altman (a4) and Chuan-Jian Zhong (a1)...


This paper describes the results of an investigation of modified synthetic protocols to produce monodispersed magnetic ferrite nanoparticles, γ-Fe2O3 and Fe3O4, and their magnetic properties. The synthesis involved thermal decomposition of organometallic precursors followed by oxidation or reduction. In the synthesis of γ-Fe2O3, iron pentacarbonyl was used as the precursor and trimethylamine oxide as the oxidant. In the synthesis of Fe3O4, iron (III) acetylacetonate was reduced by 1, 2-hexadecanediol. The particle sizes ranged from 5–15 nm with high monodispersity. Results from TEM, XPS, and SQUID characterizations of these iron oxide nanoparticles are discussed.


Corresponding author

* To whom correspondence should be addressed (


Hide All
1. Tartaj, P., Morales, M. D., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T. and Serna, C.J., J. Phys. D-Appl. Phys. 36, 182 (2003).
2. Bonnemain, B., J. Drug Targeting 6, 167, (1998).
3. (a) Li, P., Miser, D. E., Rabiei, S., Yadav, R. T. and Hajaligol, M. R., Appl. Catal. B-Environ. 43, 151 (2003).
(b) Cameron, D., Holliday, R. and Thompson, D., J. Power source 118, 298 (2003).
4. Boal, A.K., Das, K., Gray, M. and Rotello, V. M., Mater. Chem. 14, 2628 (2002).
5. Woo, K., Hong, J., Choi, S., Lee, H. W., Ahn, J. P., Kim, C. S. and Lee, S. W., Chem. Mater. 16, 2814 (2004).
6. Mikhaylova, M., Kim, D.K., Bobrysheva, N., Osmolowsky, M., Semenov, V., Tsakalakos, T. and Muhammed, M., Langmuir 20, 2472 (2004).
7. Sun, S.H., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X. and Li, G. X., J. Am. Chem. Soc 126, 273 (2004).
8. Shafi, K. V. P. M., Ulman, A., Yan, X. Z., Yang, N. L., Estournes, C., White, H. and Rafailovich, M., Langmuir 17, 5093 (2001).
9. Wilhelm, C., Gazeau, F., Roger, J., Pons, J. N. and Bacri, J. C., Langmuir 18, 8148 (2002).
10. Teng, X. W. and Yang, H., J. Mater. Chem. 14, 774 (2004).
11. Hyeon, T., Lee, S. S., Park, J., Chung, Y. and Na, H. B., J. Am. Chem. Soc. 123, 12798 (2001).
12. Fried, T., Shemer, G. and Markovich, G., Adv. Mater. 13, 1158 (2001).
13. (a) Kataby, G., Koltypin, Y., Ulman, A., Felner, I. and Gedanken, A., Appl. Surf. Sci. 201, 191 (2002).
(b) Lin, J., Zhou, W. L., Kumbhar, A., Wiemann, J., Fang, J. Y., Carpenter, E. E. and O'Connor, C. J., J. Solid State Chem. 159, 26 (2001).
(c) Ravel, B., Carpenter, E. E. and Harris, V. G., J. Appl. Phys. 91, 8195 (2002).
14. Chen, J. P., Sorensen, C.M., Klabunde, K. J. and Hadjipanayis, G. C., J. Appl. Phys. 76, 6316 (1994).
15. Wang, J. Q. and Xiao, G., Phys. Rev. B 49, 3982 (1994).
16. Chantrel, R. W. and Wohlfarth, E. P., J. Magn. Mater. 40, 1 (1983).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed