Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T21:21:30.736Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Flowerlike ZnO Nanoneedle Arrays on Si (100)

Published online by Cambridge University Press:  31 January 2011

Boqian Yang
Affiliation:
yangsiom@yahoo.com, University of Puerto Rico, Physics Department, San Juan, Puerto Rico
Xianping Feng
Affiliation:
pfeng@cnnet.upr.edu, University of Puerto Rico, Physics Department, San Juan, Puerto Rico
Get access

Abstract

Flowerlike ZnO nanoneedle arrays have been synthesized on Si (100) substrates by pulsed laser deposition techniques. The tips of the nanoneedles are ˜ 20- 50 nm in diameter and their roots are as thick as ˜ 50- 100 nm. The nanoneedle arrays grow preferentially along the [0001] direction. Raman spectroscopy shows three first order optical normal modes which confirm wurtzite structure of ZnO nanoneedles. In the low frequency zone, additive modes (92, 122, 163, and 275 cm-1) are observed and can be attributed to zone boundary phonons. ZnO nanoneedle arrays exhibit a strong UV luminescence emission, and two strong peaks at 3.258 eV and 3.288 eV are observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Appell, D., Nature (London) 419, 553 (2002)Google Scholar
2 Duan, X.F. Huang, Y. Cui, Y. Wang, J.F. and Lieber, C. M. Nature (London) 409, 66 (2001)Google Scholar
3 Cui, Y. Wei, Q. Park, H. and Lieber, C.M. Science 293, 1289 (2001)Google Scholar
4 Vayssieres, L. Keis, K. Hagfeldt, A. and Lindquist, S.-E., Chem. Mater. 13, 4386 (2001)Google Scholar
5 Huang M, H, Mao, S, Feick, H, Yan H, Q, Wu Y, Y, Kin, H, Weber, E, Russo, R and Yang P, D, Science 292, 1897 (2001)Google Scholar
6 Kar, S, Pal B, N, Chaudhuri, S and Chakravorty, D, J. Phys. Chem. B 110, 4605 (2006)Google Scholar
7 Tian Z R, R, Voigt J, A, Liu, J, Mckenzie, B, McDermott M, J, Rodriguez M, A, Konishi, H and Xu H, F, Nat. Mater. 2, 821 (2003)Google Scholar
8 Dev, A, Kar, S, Chakrabarti, S and Chaudhuri, S, Nanotechnology 17, 1533 (2006)Google Scholar
9 Sun, Ye, Addison, Katherine E and Ashfold, Michael N R, Nanotechnology 18, 495601 (2007)Google Scholar
10 Lorenz, M., Kaidashev, E.M. Rahm, A. Nobis, Th., Lenzner, J. Wagner, G. Spemann, D. Hochmuth, H., Grundmann, M. Appl. Phys. Lett. 86, 143113 (2005)Google Scholar
11 Jie, Jiansheng, Wang, Guanzhong, Chen, Yiming, Han, Xinhai, Wang, Qingtao, Xu, Bo, and Hou, J.G., Appl. Phys. Lett. 86, 031909 (2005)Google Scholar
12 Ghoshal, Tandra, Biswas, Subhajit, Kar, Soumitra, Dev, Apurba, Chakrabarti, Supriya and Chaudhuri, Subhadra, Nanotechnology 19, 065606 (2008)Google Scholar
13 Pan, Z.W., Dai, Z.R., Wang, Z.L., Science 291, 1947 (2001)Google Scholar
14 Islam, M.N. Gosh, T.B. Chopra, K.L. Acharya, H.N. Thin Solid Films 280, 20 (1996)Google Scholar
15 Gu, Zheng-Bin, Lu, Ming-Hui, Wang, Jing, Wu, Di, Zhang, Shan-Tao et al. , Appl. Phys. Lett. 88, 082111 (2006)Google Scholar
16 Damen, T.C. Porto, S.P.S., and Tell, B. Phys. Rev. 142, 570 (1966); J.M., Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)Google Scholar
17 Yadav, Harish Kumar, Sreenivas, K. Gupta, Vinay, and Katiyar, R.S. Journal of Applied Physics 104, 053507 (2008)Google Scholar
18 Yang, Boqian, Kumar, Ashok, Feng, Peter, and Katiyar, R.S. Appl. Phys. Lett. 92, 233112 (2008)Google Scholar
19 Ozgur, U. and Morkoc, H. Optical properties of ZnO and related alloys, Chapter 5, Zinc Oxide Bulk, Thin Films and Nanostructures, edited by Jagadish, chennupati and Pearton, Stephen J., Elsevier, 2006, pp 175 Google Scholar