Skip to main content Accessibility help

Symmetrically Configured AC Light-Emitting (Scale) Devices: Generalizations and Variations

  • Y. Z. Wang (a1), D. D. Gebler (a1), A. J. Epstein (a1), H. L. Wang (a2), T. M. Swager (a2) and A. G. Macdiarmid (a2)...


Most conjugated polymer-based light-emitting devices have been shown to be tunnel diodes which can only operate under forward DC driving field. Recently we have reported the fabrication of symmetrically configured AC light-emitting (SCALE) devices based on heterocyclic aromatic conjugated polymers. By adding an “insulating” layer (e.g. emeraldine base (EB) form of polyaniline) on both sides of the emitting layer, the SCALE devices emit light under both forward and reverse DC bias as well as AC driving voltage. The SCALE device structure ITO/J/emitterFl/M, has been shown to be quite general, and can be applied to a variety of electroluminescent polymers (emitter), insulating polymers (I) and electrode materials (M). Here we summarize and compare the performance of SCALE devices fabricated with different emitter, insulator, and electrode materials. The role of the insulating layer in the SCALE device operation is examined and a model that emphasizing the interface states is proposed to account for the device operation.



Hide All
1. Parker, I. D., J. Appl. Phys. 75, 1656 (1994).
2. Garten, F., Schlatmann, A. R., Gill, R. E., Vrijmoeth, J., Klapwijk, T. M., and Hadziioannou, G., Appl. Phys. Lett. 66, 2540 (1995).
3. Jeglinski, S. A., Hollier, M. E., Gold, J., Vardeny, Z. V., Ding, Y. and Barton, T., Mol. Cryst. Liq. Cryst. 256, 555 (1994).
4. Yang, Z., Hu, B., and Karasz, F. E., Macromolecules, in press (1995).
5. Fou, A. C., Onitsuka, O., Ferreira, M., Howie, D., and Rubner, M. F., Polymeric Materials Science and Engineering 72, 160 (1995).
6. (a) Wang, Y. Z., Gebler, D. D., Lin, L. B., Blatchford, J. W., Jessen, S. W., Wang, H. L., and Epstein, A. J., to be published; (b) Y. Z. Wang, D. D. Gebler, J. W. Blatchford, S. W. Jessen, L. B. Lin, T. L. Gustafson, H. -L.Wang, Y. W. Park, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein, SPIE Proceedings 2528, 54 (1995).
7. Tamamoto, T., Ito, T., and Kubota, K., Chem. Lett., 153 (1988).
8. MacDiarmid, A. G. and Epstein, A. J., Faraday Discuss. Chem. Soc. 88, 317 (1989).
9. Fu, D. K., Xu, B., Marsella, M., and Swager, T. M., Polymer Preprints 36, 585 (1995).
10. Bradley, D. D. C., Synth. Met 54, 401 (1993).
11. Henisch, H. K., Semiconductor Contacts: An Approach to Ideas and Models, Oxford University Press, Oxford (1984).
12. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, Oxford University Press, Oxford (1988).
13. MacDiarmid, A. G., Wang, H. L., Park, J. W., Fu, D. K., Marsella, M. J., Swager, T. M., Wang, Y. Z., Gebler, D. D., and Epstein, A. J., Proc. of SPIE, in press (1995); H. L. Wang, J. W. Park, D. K. Fu, M. J. Marsella, T. M. Swager, A. G. MacDiarmid, Y. Z. Wang, D. D. Gebler, and A. J. Epstein, Polymer Preprints, in press, (1995).
14. Yang, Y., Westerweele, E., Zhang, C., Smith, P., and Heeger, A. J., J. Appl. Phys. 77, 694 (1995).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed