Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T15:59:22.112Z Has data issue: false hasContentIssue false

Swift Heavy Ion Beam-Based Nanopatterning Using Self-Assembled Masks

Published online by Cambridge University Press:  01 February 2011

Jens Jensen
Affiliation:
jens.jensen@angstrom.uu.se, Uppsala University, Department of Engineering Sciences, The Ångström Laboratory, Box 534, Uppsala, SE-751 21, Sweden, 0046 18 55 5736
Ruy Sanz
Affiliation:
ruy@icmm.csic.es, Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid, Madrid, 28049, Spain
Marek Skupinski
Affiliation:
marek.skupinski@hotmail.com, Uppsala University, Department of Engineering Sciences, The Ångström Laboratory, Box 534, Uppsala, SE-751 21, Sweden
Manuel Hernandez-Vélez
Affiliation:
manuel.hernandez@uam.es, Universidad Autonoma de Madrid, Departamento de Fisica Aplicada, Madrid, 28049, Spain
Göran Possnert
Affiliation:
Goran.Possnert@angstrom.uu.se, Uppsala University, Department of Engineering Sciences, The Ångström Laboratory, Box 534, Uppsala, SE-751 21, Sweden
Klas Hjort
Affiliation:
Klas.Hjort@angstrom.uu.se, Uppsala University, Department of Engineering Sciences, The Ångström Laboratory, Box 534, Uppsala, SE-751 21, Sweden
Get access

Abstract

Swift heavy ion beam-based lithography using masks of self-assembled materials has been applied for transferring well-ordered micro- and nanopatterns to rutile TiO2 single crystals. As the induced damage has a high etching selectivity the patterns can be developed in HF with very high contrast. Here we present resulting patterns when using a mask of self-ordered silica spheres. Since the obtained structures are replicas of the mass distribution of the applied mask, the shape and size of resulting structures depend on the geometric configuration of the silica sphere layers. In addition, the resulting pattern can be tuned by varying the applied ion energy and fluence. Direct modifications of the optical properties of TiO2 in a well-defined pattern are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nalwa, H.S., Handbook of Nanostructures Materials and Nanotechnology, (Elsevier, Amsterdam 1999).Google Scholar
2. Bhushan, B. (editor) Handbook of Nanotechnology, (Springer Verlag 2004).Google Scholar
3. Spohr, R., Ion Tracks and Microtechnology, Principles and Applications, (Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig, 1990).Google Scholar
4. Razpet, A., Johansson, A., Possnert, G., Skupinski, M., Hjort, K., Hallén, A., J. Appl. Phys. 97, 44310 (2005).Google Scholar
5. Sanz, R., Johansson, A., Skupinski, M., Jensen, J., Possnert, G., Boman, M., Vazquez, M., Hjort, K., Nano Letter 6, 1065 (2006).Google Scholar
6. Skupinski, M., Jensen, J., Johansson, A., Razpet, A., Possnert, G., Boman, M., Hjort, K., submitted to J. Vac. Science and Tech. B (2006).Google Scholar
7. Burmeister, F., Badowsky, W., Braun, T., Wieprich, S., Boneberg, J., Leiderer, P., Appl. Surf. Sci. 144/145, 461 (1999).Google Scholar
8. Dillen, T. van, Blaaderen, A. van, Polman, A., Mater. Today 7/8, 40 (2004), and references therein.Google Scholar
9. Strohhöfer, C., Hoogenboom, J.P., Blaaderen, A. van, Polman, A., Adv. Mater. 14, 1815 (2002).Google Scholar
10. Skupinski, M., Sanz, R., J. Jensen, Nucl. Instrum. Meth. B, in press (2007).Google Scholar
11. Diebold, U., Surf. Sci. Rep. 48, 53229 (2003).Google Scholar
12. Rajeshwar, K., Tacconi, N.R. de, Chenthamarakshan, C. R., Chem. Mater. 13, 2765 (2001).Google Scholar
13. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Nano Lett. 5, 191 (2005).Google Scholar
14. Nomura, K., Nakanishi, T., Nagasawa, Y., Ohki, Y., Awazu, K., Fujimaki, M., Kobayashi, N., Ishii, S., Shima, K., Phys. Rev. B 68, 064106 (2003).Google Scholar
15. Awazu, K., Fujimaki, M., Ohki, Y., Komatsubara, T., Radiation Measurements 40, 722 (2005).Google Scholar
16. Micheletto, R., Fukuda, H., Ohtsu, M., Langmuir 11, 3333 (1995).Google Scholar
18. Jensen, J., Razpet, A., Skupinski, M., Possnert, G., Nucl. Instrum. Meth. B 243, 119 (2006), and references therein.Google Scholar