Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T20:08:20.168Z Has data issue: false hasContentIssue false

Surface Spectroscopic Studies of the Deposition Mechanisms of TinX Films from Organometallic Precursors

Published online by Cambridge University Press:  25 February 2011

C. M. Truong
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
J. S. Corneille
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
W. S. Oh
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
D. W. Goodman
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
Get access

Abstract

The adsorption and thermal behavior of tetrakis-(dimethylamido)-titaniurn (TDMAT), Ti[NMe2]4, were investigated by surface spectroscopic techniques in the temperature range 100-1100K. A metallic Ti substrate readily dissociates TDMAT even below 300 K, producing a carbon-rich interface. When the substrate is exposed to a continuous flux of TDMAT at growth temperatures (550-700K), deposition of carbon-rich TiCxNy films readily occurs with a high precursor reactive sticking coefficient. With the addition of sufficient NH3 flux, we demonstrate the existence of a direct surface-reaction-driven deposition mechanism which involves reaction(s) between adsorbed TDMAT and NHX species on the film surface and thus leads to growth of substantially cleaner TiNx films. This growth mechanism dominates at low pressures (≤10-4Torr) where gas-phase reaction between the precursor gases becomes insignificant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fix, R. M., Gordon, R. G. and Hoffmann, D. M., Mat. Res. Soc. Sym. Proc. 168, 311 (1990); Chem. Mater. 2, 235 (1990).Google Scholar
2 Ishihara, K., Yamazaki, K., Hamada, H., Kamisako, K. and Tarui, Y., Japn. J. Appl. Phys. 29, 2103 (1990).Google Scholar
3 Dubois, L. H., Zegarski, B. R. and Girolami, G. S., J. Electrochem. Soc. 139, 3603 (1992).CrossRefGoogle Scholar
4 Prybyla, J. A., Chiang, C.-M. and Dubois, L. H., J. Electrochem. Soc. 140, 2695 (1993).Google Scholar
5 Dubois, L. H., Polyhedron, in press.Google Scholar
6 Katz, A., Feigold, A., Nakahara, S., Pearton, S. J., Lane, E., Geva, M., Stevie, F. and Jones, K., J. Appl. Phys. 71, 993 (1992).Google Scholar
7 Weiller, B. H. and Partido, B. V., Chem. Mater., in press.Google Scholar
8 Leung, L.-W. H., He, J.-W. and Goodman, D. W., J. Chem. Phys. 93 , 1 (1990).Google Scholar
9 Sugiyama, K., Pac, S., Takahashi, Y., Motojima, S., J. Electrochem. Soc. 122, 1545 (1975).CrossRefGoogle Scholar
10 Katz, A., Feigold, A., Pearton, S. J., Nakahara, S., Ellington, M., Chakrabati, U. K., Geva, M. and Lane, E., J. Appl. Phys. 70, 3666 (1991).Google Scholar
11 Bradley, D. C., Thomas, I. M., J. Chem. Soc., 3857 (1960).Google Scholar
12 Raaijmakers, I. J. and Yang, J., Appl. Surf. Sci. 73, 31 (1993).Google Scholar