Skip to main content Accessibility help
×
Home

Surface Roughness Evolution in Amorphous Tantalum Oxide Films Deposited by Pulsed Reactive Sputtering

  • Pushkar Jain (a1), Jasbir S. Juneja (a1), Tansel Karabacak (a1), Eugene J. Rymaszewski (a1) and Toh –Ming Lu (a1)...

Abstract

The growth front roughness of Ta2O5 amorphous films grown by pulsed plasma d.c. reactive sputtering has been investigated using atomic force microscopy. Film deposition during reactive sputter deposition is explained based on dynamic scaling hypothesis in which both time and space scaling are considered simultaneously. The interface width w increases as a power law with deposition time t, w ∼ tβ, with β = 0.45 ± 0.03. The lateral correlation length ξ grows as ξ ∼ t1/z, with 1/z = 0.61 ± 0.07. The roughness exponent extracted from the slope of height-height correlation analysis is α = 0.79 ± 0.04. The results are similar to that obtained by sputtering of elemental materials, and do not fit to any of the presently known growth models. Monte Carlo simulations were carried out based on a recently developed re-emission model, where incident flux distribution, shadowing, sticking coefficient, and surface diffusion mechanisms were accounted for in the deposition process. An important finding is that sticking coefficient must be less than unity to obtain the observed β value (∼0.45).

Copyright

References

Hide All
1. Hashimoto, C., Oikawa, H., and Honma, N., IEEE Trans. Electron Devices 36, 14 (1989).
2. Lo, G. Q., Kwong, D. L., Fazan, P. C., Mathews, V. K., and Sandler, N., IEEE Electron Device Lett. 14, 216 (1993).
3. Chaneliere, C., Autran, J. L., Devine, R. A. B., and Balland, B., Mater. Sci. Eng. R. 22, 269 (1998).
4. Kim, J.-Y., Garg, A., Rymaszewski, E.J., and Lu, T.-M., IEEE Trans. Comp. Packag. Technol. 24 (3), 526 (2001).
5. Zhao, Y.–P., Wang, G.-C, Lu, T.-M, Palasantas, G., and De Hosson, J.Th.M., Phys. Rev. B60, 9157 (1999).
6. Drotar, J.T., Zhao, Y.–P., Lu, T.-M, and Wang, G.-C, Phys. Rev. B61, 3012 (2000).
7. Drotar, J.T., Zhao, Y.–P., Lu, T.-M, and Wang, G.-C, Phys. Rev. B62, 2118 (2000).
8. Wu, X. M., Wu, P. K., lu, T.-M, and Rymaszewski, E. J., Appl. Phys. Lett. 62 (25), 3264 (1993).
9. Nielsen, M. C., Kim, J.-Y, Rymaszewski, E. J., Lu, T-M, Kumar, A., and Bakhru, H., IEEE Trans. Comp., Packag. Manufact. Technol. B. 21 (3), 274 (1998).
10. Sproul, W. D., Graham, M. E., Wong, M. S., Lopez, S., Li, D., and Scholl, R. A., J. Vac. Sci. Technol. A 13, 1188 (1995).
11. Lu, T.-M., Yang, H.-N., and Wang, G.-C., in Fractal Aspects of Materials, edited by Family, F., Meakin, P., Sapoval, B., and Wool, R., Mat. Res. Soc. Symp. Proc. 367, 283 (1995).
12. Zhao, Y.-P., Wang, G.-C., and Lu, T.-M., Characterization of Amorphous and Crystalline Rough Surfaces: Principles and Applications, (Academic Press, San Diego, 2000).
13. Aue, J. and De Hosson, J.Th.M., Appl. Phys. Lett. 71, 1347 (1997).
14. Hudspeth, Q.M., Nangle, K.P., Zhao, Y.-P., Karabacak, T.,, Nguyen, C.V., Meyyappan, M., Wang, G.C., and Lu, T.-M., Surface Science, 515/2–3, 453461(2002).
15. Barabasi, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth (Cambridge University, Cambridge, England, 1995.
16. See Refs. 3 and You, H., Chiarello, R. P., Kim, H. K., and Vadervoort, K. G., Phys. Rev. Lett 70, 2900 (1993);
Lita, A. E. and Sanchez, J. E., Phys. Rev. B61, 7692 (2000);
Lita, A. E. and Sanchez, J. E., J. Appl. Phys. 85, 876 (1999).
17. Family, F. and Vicsek, T., Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).
18. Karunasiri, R. P. U., Bruinsma, R., and Rudnick, J., Phys. Rev. Lett. 62, 788 (1989).
19. Yao, J.-H. and Guo, H., Phys. Rev. E 47, 1007 (1993).
20. Karabacak, T., Zhao, Y.-P., Wang, G.-C., Lu, T.-M., Phys. Rev. B66, 075329 (2002).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed