Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T10:01:39.865Z Has data issue: false hasContentIssue false

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes

Published online by Cambridge University Press:  21 March 2011

B. Mishori
Affiliation:
Physics Department and New York State Center for Advanced Technology in Ultrafast Photonic Materials and ApplicationsBrooklyn College of the City University of New York Brooklyn, NY 11210
L. Mourokh
Affiliation:
Physics Department and New York State Center for Advanced Technology in Ultrafast Photonic Materials and ApplicationsBrooklyn College of the City University of New York Brooklyn, NY 11210
Fred H. Pollak
Affiliation:
Physics Department and New York State Center for Advanced Technology in Ultrafast Photonic Materials and ApplicationsBrooklyn College of the City University of New York Brooklyn, NY 11210
J.P. DeBray
Affiliation:
EMCORE Corporation 394 Elizabeth Avenue Somerset, NJ 08873
S. Ting
Affiliation:
EMCORE Corporation 394 Elizabeth Avenue Somerset, NJ 08873
I. Ferguson
Affiliation:
EMCORE Corporation 394 Elizabeth Avenue Somerset, NJ 08873
Get access

Abstract

InGaN/GaN/AlGaN multiple quantum well light emitting diodes (MWQ LED's) with different levels of p-doping in the contact layer have been characterized using surface photovoltage spectroscopy (SPS). Due to the high sensitivity of the SPS technique to the electric field, there is a strong correlation between the p-doping level in the contact layer and the magnitude of the SPS signal originating from the MQW region. The experimental results are confirmed by a numerical simulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H., Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
3 Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., and Amano, H., Electron. Lett. 32, 1105 (1996).Google Scholar
4 Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mujai, T., Jpn. J. Appl. Phys. 34, L1332 (1995).Google Scholar
5 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
6 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H., Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
7 Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., and Amano, H., Electron. Lett. 32, 1105 (1996).Google Scholar
8 Khan, M. Asif, Olson, D. T., and Kuznia, J. N., Carlos, W. I., Freitas, J. A. Jr, J. Appl. Phys. 74, 5901 (1993).Google Scholar
9 Fischer, S., Wetzel, C., , E, , E, , Haller, Meyer, B. K., Appl. Phys. Lett. 67, 1298 (1995).Google Scholar
10. Chichibu, S., Azuhata, T., Sota, T., Nakamura, S., Appl. Phys. Lett. 69, 4188, (1996).Google Scholar
11 Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S., Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
12 Shalish, I., Kronik, L., Segal, G., Rosenwaks, Y., Shapira, Y., Tisch, U., and Salzman, J., Phys. Rev. B, 59, 9748 (1999).Google Scholar
13 Shalish, I., Kronik, L., Segal, G., and Shapira, Y., Zamir, S., Meyler, B., and Salzman, J., Phys. Rev. B, 23, 15573 (2000).Google Scholar
14 Krystek, W., Pollak, F. H., Feng, Z.C., Schurman, M. and Stall, R.A., Mat. Res. Soc. Symp. Proc. 482, 573 (1998).Google Scholar
15 Kronik, L. and Shapira, Y., Surface Science Reports 37, 1 (1999).Google Scholar
16 Suzuki, M., Uenoyama, T., Yanase, A., Phys. Rev. B, 52, 8132 (1995)Google Scholar
17 Burstein, L., Bregman, J., and Shapira, Y., J. Appl. Phys., 69, 2312 (1991).Google Scholar
18 Pollak, F.H., Mishori, B., and Muñoz, M., private communication.Google Scholar
19 Nakamura, S., Harada, Y., and Seno, M., Appl. Phys. Lett. 58, 2021 (1991).Google Scholar
20 Yoshida, S., Gonda, S., and Misawa, S., J. Appl. Phys. 53, 6844 (1982).Google Scholar
21 Hacke, P., Detchprohm, T.,. Hiramatsu, K., Sawaki, N., Tadatomo, K., and Miyake, K., J. Appl. Phys. 76, 304 (1994).Google Scholar
22 Ashkinazi, G., Leibovitch, M., and Nathan, M., IEEE Trans. Electron Devices 40, 285 (1993).Google Scholar