Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T14:01:31.593Z Has data issue: false hasContentIssue false

Surface Morphology Of PZT Thin Films Prepared By Pulsed Laser Deposition

Published online by Cambridge University Press:  10 February 2011

Masaaki Yamazato
Affiliation:
Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo-machi, Saga, 840-8502, JAPAN
Masamitsu Nagano
Affiliation:
Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo-machi, Saga, 840-8502, JAPAN
Tomoaki Ikegami
Affiliation:
Department of Electrical and Computer Engineering, Kumamoto University, Kumamoto, 860-8555, JAPAN
Kenji Ebihara
Affiliation:
Department of Electrical and Computer Engineering, Kumamoto University, Kumamoto, 860-8555, JAPAN
Get access

Abstract

Ferroelectric PbZr0.52Ti0.48O3(PZT)/YBa2 Cu3O7−x(YBCO) heterostructures on MgO substrate were fabricated by KrF pulsed laser deposition. The grid electrode was set between a substrate and target for improvement of surface morphology. The typical PZT layer had excellent ferroelectric properties; remnant polarization of 39 µC/cm2, coercive electric field of 41 kV/cm, loss tan δ=0.04, and dielectric constant of 950. X-ray diffraction results show that the films had highly c-axis and (a, b) plane orientation. The full widths at half-maximum (FWHM) of rocking curves was decreased with increasing the applied voltage of grid electrode. Atomic force microscopy (AFM) images of PZT layer showed that the film morphology was improved by using a grid electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Scott, J. F. and Araujo, C., Science, 246, 1400 (1989).Google Scholar
2 Taylor, D. J., Larsen, P. K., and Cuppens, R., Appl. Phvs.Lett., 64, 1392 (1994).Google Scholar
3 Auciello, O., Ray, M. A., Palmer, D., Duarte, J., McGuire, G. E., and Temple, D., Appl. Phys. Lett., 66, 2183 (1995).Google Scholar
4 Kuratani, Y., Omura, S., Okuyama, M. and Hamakawa, Y., Jpn. J. Appl., Phys. 32, 5471 (1995)Google Scholar
5 Arakawa, T., Arai, N., Yin, H., Kaneda, H., Sugahara, M. and Haneji, N., Jpn. J. Appl. Phys., 38, 2869 (1999)Google Scholar
6 Kinoshita, K., Ishibashi, H. and Kobayashi, T., Jpn. J. Appl. Phys., 33, L417 (1994).Google Scholar
7 Kim, D-. W., Oh, S. –M., Lee, S. –H. and Noh, T. W., Jpn. J. Appl. Phys., 37, 2016 (1998)Google Scholar
8 Tachiki, M., Hosomi, T. and Kobayashi, T., Jpn. J. Appl. Phys., 39, 1817 (2000)Google Scholar
9 Grishin, A. M., Yamazato, M., Yamagata, Y. and Ebihara, K., Appl: Phys. Lett., 72, 620 (1998).Google Scholar
10 Yamazato, M., Grishin, A. M., Yamagata, Y., Ikegami, T. and Ebihara, K., MRS Symp. Proc., 526, Advances in Laser Ablation of Materials, 187 (1998).Google Scholar
11 Schlom, D. G., Marshall, A. F., Sizemore, J. T., Chen, Z. J., Eckstein, J. N., Bozovic, I., Dessonneck, K. E. von, Harris, J. S. Jr., and Bravman, J. C., J. Cryst. Growth, 102, 361 (1990)Google Scholar
12 Barkley, D. D., Johnson, B. R., Anand, N., Beauchamp, K. M., Conroy, L. E., Goldman, A. M., Maps, J., Mauersberger, K., Mecartney, M. L., Morton, J., Tuominen, M. and Zhang, Y-J., Appl.Phys. Lett., 53, 1973 (1988)Google Scholar
13 Endo, T., Yan, H., Abe, K., Nagase, S., Ishida, Y. and Nishiku, H., J. Vac. Sci. & Technol, A15, 1990 (1997)Google Scholar
14 Endo, T., Horie, M., Hirate, N., Itoh, K., Yamada, S. and Tada, M., Itoh, K., Sugiyama, M., Sano, S., Watabe, K., Jpn. J. Appl. Phys, 37, L886 (1998)Google Scholar