Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-25T18:23:57.109Z Has data issue: false hasContentIssue false

Surface Microchemical Reactions during Hydrogenated Silicon Growth Studied by In-situ ESR Technique

Published online by Cambridge University Press:  17 March 2011

Satoshi Yamasaki*
Affiliation:
Joint Research Center for Atom Technology (JRCAT) -National Institute for Advanced Interdisciplinary Research (NAIR) 1-1-4 Higashi, Tsukuba-City, Ibaraki 305-9562, Japan
Get access

Abstract

The in-situ ESR technique is applied to a plasma-enhanced chemical vapor deposition (PECVD) system in order to investigate the surface microchemical reactions during the growth of hydrogenated amorphous silicon (a-Si:H) and plasma treatments of H2 and Ar gases on a- Si:H. The growth model of a-Si:H and the role of H atoms on a-Si:H films are discussed using the experimental results. The recent results on the dynamic surface reactions of crystalline silicon with oxygen molecules in an ultra-high-vacuum ESR system are introduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamasaki, S., Umeda, T., Isoya, J., and Tanaka, K., Appl. Phys. Lett., 70, 1137 (1997).Google Scholar
2. Umeda, T., Yamasaki, S., Nishizawa, M., Yasuda, T., and Tanaka, K., Appl. Surface Science, in press.Google Scholar
3. Yamasaki, S., Umeda, T., Isoya, J., and Tanaka, K., in Amorphous and Microcrystalline Silicon Technology - 1997, edited by Wagner, S., Hack, M., Schiff, E. A., Schropp, R., and Shimizu, I. (Mat. Res. Soc. Proc. 467, Pittsburgh, PA, 1997), p. 507.Google Scholar
4. Yamasaki, S., Malten, C., Umeda, T., Isoya, J., and Tanaka, K., in Microcrystalline and Nanocrystalline Semiconductors -1998, edited by Canham, L. T., Sailor, M. J., Tanaka, K., Tsai, C.-C. (Mat. Res. Soc. Proc. 536, Warrendale, PA, 1999), p. 463.Google Scholar
5. Yamasaki, S., Umeda, T., Isoya, J., and Tanaka, K., J. Non-Cryst. Solids 227–230, 83 (1998).Google Scholar
6. Yamasaki, S., , U., Das, K., Umeda, T., and Tanaka, K., J. Non-Cryst. Solids, in press.Google Scholar
7. Das, U. K., Yasuda, T., Isoya, J., and Yamasaki, S., in Amorphous and Heterogeneous Silicon Thin Films - 2000, in this volume.Google Scholar
8. Toyoshima, Y., Arai, K., Matsuda, A., and Tanaka, K., J. Non-Cryst. Solids, 137&138, 765 (1991).Google Scholar
9. Collins, R. W., AMORPHOUS SILICON AND RELATED MATERIALS, ed. Fritzsche, Hellmut (World Scientific, 1989) pp.10031044.Google Scholar
10. Ikuta, K., Tanaka, K., Yamasaki, S., Miki, K., and Matsuda, A., Appl. Phys. Lett. 65, 1760 (1994).Google Scholar
11. Johnson, N. M., Walker, J., and Stevens, K. S., Appl. Phys. Lett. 69, 2631 (1991).Google Scholar
12. Lunsford, J. H., in Chemistry and physics of solid surfaces, Vanselow, R., Tong, S. Y., Eds. (CRC, Cleveland, 1977), pp. 255273.Google Scholar
13. Howe, R. F., in Chemistry and physics of solid surfaces, Vanselow, R., Howe, R. F., Eds. (Springer, Berlin, 1984), vol. 5, pp. 3964.Google Scholar
14.see, for example, Lucovsky, G., Tsu, D. V., Rudder, R. A. and Markunas, R. J., in Thin Film Processes, edited by Vossen, J. L. and Kern, W., (Academic Press, San Diego, 1991) pp 565620.Google Scholar
15. Jones, W. E., Macknight, S. D., and Teng, L., J. Phys. Chem. 73, 407 (1973), E. R. Ausin and F. W. Lampe, J. Phys. Chem., 81, 1134 (1977).Google Scholar
16.16. Koh, J., Lu, Y., Wronski, C. R., Kuang, Y., and Collins, R. W., Appl. Phys. Lett. 69, 1297 (1996).Google Scholar
17. Beyer, W. and Zastrow, U., in Amorphous Silicon Technology-1996, edited by Hack, M., Schiff, E. A., Wagner, S., Schropp, R., and Matsuda, A. (Mat. Res. Soc. Symp. Proc. 420, Pittsburg, PA, 1996), p.497.Google Scholar
18. Futako, W., Yoshino, K., Fortmann, C. M., and Shimizu, I., J. Appl. Phys., 86, 812 (1999).Google Scholar
19. Brower, K. L., Apl. Phys. Lett,. 43, 1111(1983).Google Scholar