Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T05:00:31.349Z Has data issue: false hasContentIssue false

Surface Chemistry of Porous Silicon

Published online by Cambridge University Press:  09 August 2011

J.-N. Chazalviel
Affiliation:
Laboratoire PMC, CNRS-Lcole Polytechnique, 91128 Palaiseau, FRANCE.
F. Ozanam
Affiliation:
Laboratoire PMC, CNRS-Lcole Polytechnique, 91128 Palaiseau, FRANCE.
Get access

Abstract

As-prepared porous silicon comes out covered with covalently bonded hydrogen. This hydrogen coating provides a good electronic passivation of the surface, but it exhibits limited stability, being removed by thermal desorption or converted into an oxide upon prolonged storage in air. Starting from the hydrogenated surface, an oxide layer with good electronic properties is also obtained by anodic oxidation or rapid thermal oxidation.

The hydrogenated surface may be nitridized using thermal treatments in nitrogen or ammonia. Fast halogenation of the surface may be obtained at room temperature, but the resulting coating is rapidly converted to an oxide in the presence of moisture. Many metals have been incorporated into the pores, using chemical or vacuum techniques, or even direct incorporation during porous silicon formation.

More interestingly, organic derivatization may increase surface stability or provide chemical functionalities. The poor reactivity of the hydrogenated surface can be remedied by using various methods: thermal desorption of hydrogen, hydroxylation or halogenation of the surface, thermal or UV assisted reaction. However, most promising results have been obtained through either Lewis-acid catalyzed grafting or electrochemical activation of the surface. The latter method has been used for grafting formate, alkoxy, and recently methyl groups. In most of these methods, oxidation is present as a parallel path, and care must be taken if it is not desired. Also, 100% substitution of the hydrogens by organic groups has never been attained, due to steric hindrance problems. The electrochemical method appears especially fast, and has led to 80% substitution of the hydrogens by methyl groups, with no photoluminescence loss and a chemical stability increased by one order of magnitude.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kato, Y., Ito, T., and Hiraki, A., Jpn. J. Appl. Phys. 27, L1406 (1988).Google Scholar
2. Gupta, P., Colvin, V.L. and George, S.M., Phys. Rev. B 37, 8234 (1988).Google Scholar
3. Rao, A. Venkateswara, Ozanam, F. and Chazalviel, J.-N., J. Electrochem. Soc. 138, 153 (1991).Google Scholar
4. Matsumoto, T., Masumoto, Y., Nakashima, S. and Koshida, N., Thin Solid Films 297, 31 (1997).Google Scholar
5. Yablonovitch, E., Allara, D.L., Tsang, C.C., Gmitter, T. and Bright, T.B., Phys. Rev. Lett. 57,249 (1986).Google Scholar
6. Dubin, V.M., Ozanam, F. and Chazalviel, J.-N., MRS Symp. Proc. 358, 519 (1995).Google Scholar
7. Chazalviel, J.-N. and Ozanam, F., in Structural and Optical Properties of Porous Silicon Nanostructures, edited by Amato, G., Delerue, C. and H.-J., von Bardeleben (Gordon and Breach, Amsterdam, 1997) pp. 5371.Google Scholar
8. Tischler, M.A., Collins, R.T., Stathis, J.H. and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
9. Tsybeskov, L., Peng, C., Duttagupta, S.P., Ettedgui, E., Gao, Y., Fauchet, P.M. and Carver, G.E., Mat. Res. Soc. Symp. Proc. 298, 307 (1993).Google Scholar
10. Suemune, I., Noguchi, N. and Yamanishi, M., Jpn. J. Appl. Phys. 31, L494 (1992).Google Scholar
11. Wolkin-Vakrat, M., Fauchet, P.M., Allan, G. and Delerue, C., Phys. Rev. Lett. (under press).Google Scholar
12. Petit, D., Chazalviel, J.-N., Ozanam, F. and Devreux, F., Appl. Phys. Lett. 70, 191 (1997).Google Scholar
13. Zoubir, N. Hadj and Vergnat, M., Appl. Surf. Sci. 89, 35 (1995).Google Scholar
14. Kux, A., Muller, F. and Koch, F., MRS Symp. Proc. 283, 311 (1993).Google Scholar
15. Nakajima, A., Ikatura, T., Watanabe, S. and Nakayama, N., Appl. Phys. Lett. 61, 46 (1992).Google Scholar
16. Kozlowski, F., Wagenseil, W., Steiner, P. and Lang, W., MRS Symp. Proc. 358, 677 (1995).Google Scholar
17. Mauckner, G., Walter, T., Baier, T., Thonke, K. and Sauer, R., MRS Symp. Proc. 283, 109 (1993).Google Scholar
18. Hou, X.Y., Shi, G., Wang, W., Zhang, F.L., Hao, P.H., Huang, D.M. and Wang, X., Appi. Phys. Lett. 62, 1097 (1993).Google Scholar
19. Linsmeier, J., Wrist, K., Schenk, H., Hilpert, U., Ossau, W., Fricke, J. and Arens-Fischer, R., Thin Solid Films 297, 26 (1997).Google Scholar
20. Dubin, V.M., Ozanam, F. and Chazalviel, J.-N., Vibr. Spec. 8, 159 (1995).Google Scholar
21. Halimaoui, A., NATO ASI Ser. E 244 (Kluwer, Dordrecht, 1993) p. 11.Google Scholar
22. Bsiesy, A., Vial, J.C., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci. 254, 195 (1991).Google Scholar
23. Hory, M.A., Hérino, R., Ligeon, M., Muller, F., Gaspard, F., Mihalcescu, I. and Vial, J.C., Thin Solid Films 255, 200 (1995).Google Scholar
24. Uosaki, K., Kondo, T., Noguchi, H., Murakoshi, K. and Kim, Y.Y., J. Phys. Chem. 100, 4564 (1996).Google Scholar
25. Lehmann, V. and Gbsele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
26. Gerischer, H., Allongue, P. and Costa-Kieling, V., Ber. Bunsenges. Phys. Chem. 97, 753 (1993).Google Scholar
27. Chazalviel, J.-N. and Ozanam, F., MRS Symp. Proc. 283, 359 (1993).Google Scholar
28. Chazalviel, J.-N., in Porous Silicon Science and Technology, edited by Vial, J. C. and Derrien, J. (Les Éditions de Physique, les Ulis, 1995) pp. 1732.Google Scholar
29. Kooij, E.S., Rama, A.R. and Kelly, J.J., Surf. Sci. 370, 125 (1997).Google Scholar
30. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B.K., Koch, F. and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
31. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P. and Fauchet, P.M., Nature 384, 338 (1996).Google Scholar
32. Gupta, P., Dillon, A.C., Bracker, A.S. and George, S.M., Surf. Sci. 245, 360 (1991).Google Scholar
33. Anderson, R.C., Muller, R.S. and Tobias, C.W., J. Electrochem. Soc. 140, 1393 (1993).Google Scholar
34. Dillon, A.C., Gupta, P., Robinson, M.B., Bracker, A.S. and George, S.M., J. Vac. Sci. Technol. A9, 2222 (1991).Google Scholar
35. Morazzani, V., Cantin, J.-L., Ortega, C., Pajot, B., Rahbi, R., Rosenbauer, M., Bardeleben, H.J. von and Vazsonyi, E., Thin Solid Films 276, 32 (1996).Google Scholar
36. Lauerhaas, J.M. and Sailor, M.J., MRS Symp. Proc. 298, 259 (1993).Google Scholar
37. Lavine, J.M., Sawan, S.P., Shieh, Y.T. and Bellezza, A.J., Appl. Phys. Lett. 62, 1099(1993).Google Scholar
38. Seo, Y.H., Lee, H.-J., Jeon, H.I., Oh, D. H., Nahm, K.S., Lee, Y.H., Suh, E.-K., Lee, H.J. and Kwang, Y.G., Appl. Phys. Lett. 62, 1812 (1993).Google Scholar
39. Andsager, D., Hilliard, J. and Nayfeh, M.H., Appl. Phys. Lett. 64, 1141 (1994).Google Scholar
40. Steiner, P., Kozlowski, F., Wielunski, M. and Lang, W., Jpn. J. Appl. Phys. 33, 6075 (1994).Google Scholar
41. Zhang, L., Coffer, J.L., Xu, D. and Pinizzotto, R.F., J. Electrochem. Soc. 143, 1390 (1996).Google Scholar
42. Dücsö, C., Khanh, N.Q., Horváth, Z., Bársony, I., Utriainen, M., Lehto, S., Nieminen, M. and Niinistö, L., J. Electrochem. Soc. 143, 683 (1996).Google Scholar
43. Bjorklund, R.B., Zangooie, S. and Arwin, H., Langmuir 13, 1440 (1997).Google Scholar
44. Aylett, B.J., Harding, I.S., Earwaker, L.G., Forcey, K. and Giaddui, T., Thin Solid Films 276, 253 (1996).Google Scholar
45. Zhang, Y.H., Li, X.J., Zheng, L. and Chen, Q.W., Phys. Rev. Lett. 81, 1710 (1993).Google Scholar
46. Coffer, J.L., Lilley, S.C., Martin, R.A. and Files-Sesler, L.A., J. Appl. Phys. 74, 2094 (1993).Google Scholar
47. Canham, L.T., Appl. Phys. Lett. 63, 337 (1993).Google Scholar
48. Dillon, A.C., Robinson, M.B., Han, M.Y. and George, S.M., J. Electrochem. Soc. 139, 537 (1992).Google Scholar
49. Glass, J.A. Jr., Wovchko, E.A. and Yates, J.T., Jr., Surf. Sci. 338, 125 (1995).Google Scholar
50. Dubin, V.M., Vieillard, C., Ozanam, F. and Chazalviel, J.-N., Phys. Stat. Sol. (b) 190, 47(1995).Google Scholar
51. Lee, E.J., Ha, J.S. and Sailor, M.J., MRS Symp. Proc. 358, 387 (1995).Google Scholar
52. Kim, N.Y. and Laibinis, P.E., J. Am. Chem. Soc. 119, 2297 (1997).Google Scholar
53. Vieillard, C., Warntjes, M., Ozanam, F. and Chazalviel, J.-N., ECS Conf. Proc. 95–25, 350 (1996).Google Scholar
54. Fellah, S., Gabouze, N., Ozanam, F., Chazalviel, J.-N., Dakhia, A. and Belkacem, Y., EMRS Meeting (Strasbourg, June 1998) symposium B, abstract IIP.10 (to be published).Google Scholar
55. Li, K.-H., Tsai, C., Campbell, J.C., Kovar, M. and White, J.M., J. Electronic Mat. 23, 409 (1994).Google Scholar
56. VanderKam, S.K., Bocarsly, A.B. and Schwartz, J., Chem. Mater. 10, 685 (1998).Google Scholar
57. Bansal, A., Li, X., Lauermann, I., Lewis, N.S., Yi, S.I. and Weinberg, W.H., J. Am. Chem.Soc. 118, 7225 (1996).Google Scholar
58. Linford, M.R., Fenter, P., Eisenberger, P.M. and Chidsey, C.E.D., J. Am. Chem. Soc. 117, 3145 (1996).Google Scholar
59. Zazzera, L.A., Evans, J.F., Deruelle, M., Tirrell, M., Kessel, C.R. and Mckeown, P., J. Electrochem. Soc. 144, 2184 (1997).Google Scholar
60. Buriak, J.M. and Allen, M.J., J. Am. Chem. Soc. 120, 1339 (1998).Google Scholar
61. Lee, E.J., Ha, J.S. and Sailor, M.J., J. Am. Chem. Soc. 117, 8295 (1995).Google Scholar
62. Lee, E.J., Bitner, T.W., Ha, J.S., Shane, M.J. and Sailor, M.J., J. Am. Chem. Soc. 118, 5375 (1996).Google Scholar
63. Warntjes, M., Vieillard, C., Ozanam, F. and Chazalviel, J.-N., J. Electrochem. Soc. 142, 4138 (1995).Google Scholar
64. Villeneuve, C. Henry de, Pinson, J., Bernard, M.C. and Allongue, P., J. Phys. Chem. B 101, 2415 (1997).Google Scholar
65. Dubois, T., Ozanam, F. and Chazalviel, J.-N., ECS Conf. Proc. 97–7, 296 (1997).Google Scholar