Skip to main content Accessibility help

Surface acoustic wave resonator from thick MOVPE-grown layers of GaN(0001) on sapphire

  • Sverre V. Pettersen (a1), Thomas Tybell (a1), Arne Rønnekleiv (a1), Stig Rooth (a2), Veit Schwegler (a3) and Jostein K. Grepstad (a1)...


We report on fabrication and measurement of a surface acoustic wave resonator prepared on ∼10m thick GaN(0001) films. The films were grown by metal-organic vapor phase epitaxy on a c-plane sapphire substrate. The surface morphology of the films were examined with scanning electron and atomic force microscopy. A metallic bilayer of Al/Ti was subsequently evaporated on the nitride film surface. Definition of the resonator interdigital transducers, designed for a wavelength of λ=7.76m, was accomplished with standard UV lithography and lift-off. S-parameter measurements showed a resonator center frequency f 0=495MHz at room temperature, corresponding to a surface acoustic wave velocity of 3844m/s. The insertion loss at center frequency was measured at 8.2dB, and the loaded Q-factor was estimated at 2200. Finally, measurements of the resonator center frequency for temperatures in the range 25–155°C showed a temperature coefficient of -18ppm/°C. The intrinsic GaN SAW velocity and electromechanical coupling coefficient were estimated at νSAW=383 1m/s and K 2=1.8±0.4·10−3.



Hide All
1. Nakamura, S. and Fasol, G., The Blue Laser Diode, Springer-Verlag, Berlin Heidelberg (1997).
2. O'Clock, G. D. Jr and Duffy, M. T., Appl. Phys. Lett. 23, 55 (1973).
3. Deger, C., Born, E., Angerer, H., Ambacher, O., Stutzmann, M., Hornsteiner, J., Riha, E. and Fischerauer, G., Appl. Phys. Lett. 72, 2400 (1998).
4. Smith, W. R., J. Appl. Phys. 42, 3016 (1971).
5. Khan, A., Rimeika, R., Čiplys, D., Gaska, R. and Shur, M. S., Phys. Stat. Sol. (B), 216, 477 (1999).
6. Gil, B. (ed.), Group III Nitride Semiconductor Compounds - Physics and Applications, Oxford University Press, Oxford (1998).
7. Campbell, C. K., Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, New York (1998).
8. Vollmer, J. and Gandolfo, D., Science, 175, 129 (1972).
9. Čiplys, D., Rimeika, R., Gaska, R., Shur, M. S., Khan, A. and Yang, J.W., Electron. Lett. 36, 591 (2000).
10. Chin, V. W., Tansley, T. L. and Osotchan, T., J. Appl. Phys. 75, 7365 (1994).
11. Polian, A., Grimsditch, M., Grzegory, I., J. Appl. Phys. 79, 3343 (1996).
12. Bykhovski, A. D., Gelmont, B. L. and Shur, M. S., J. Appl. Phys. 81, 6332 (1997).
13. Edgar, J. H. (ed.), Properties of group III-Nitrides, EMIS data reviews series Vol. 11, INSPEC (1994).
14. Auld, B. A., Acoustic Fields and Waves in Solids, John Wiley & Sons, New York (1973).
15. Rooth, S., Halvorsen, E., Bardal, S. and Tuset, E.D., IEEE Ultrason. Symp. Proc. 1, 329 (2000).
16. Lee, S.-H., Jeong, H.-H., Bae, S.-B., Choi, H.-C., Lee, J.-H. and Lee, Y.-H., IEEE Trans. on Electron. Dev. 48, 524 (2001).
17. Jeong, H.-H., Kim, S.-K., Jung, Y.-C., Choi, H.-C., Lee, J.-H. and Lee, Y.-H., Phys. Stat. Sol. (A), 188, 247 (2001).
18. Mitsuyu, T., Ono, S. and Wasa, K., J. Appl. Phys. 51, 2464 (1980).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed