Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T15:42:30.757Z Has data issue: false hasContentIssue false

Suppression of Island Formation During Initial Stages of Ge/Si(100) Growth by Ion-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  25 February 2011

C.J. Tsai
Affiliation:
California Institute of Technology, Thomas J. Watson Laboratory of Applied Physics, Pasadena, CA 91125
H.A. Atwater
Affiliation:
California Institute of Technology, Thomas J. Watson Laboratory of Applied Physics, Pasadena, CA 91125
Get access

Abstract

We have observed a suppression of island formation and an increase in the thickness limit for layer-by-layer growth of Ge on Si (100) by ion-assisted molecular beam epitaxy. Island suppression is observed both for ion energies at which surface defect generation dominates bulk defect generation and at which the majority of defects generated are bulk defects. This experiment, in conjunction with results of a linear elastic stability model for islanding, reveals that the kinetic mechanism for the suppression of island formation via ion bombardment is the reduction of surface amplitude fluctuations during the early stages of growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gilmer, G.H., Grabow, M.H., and Bakker, A.F., Mater. Sci. Eng. B, 6, 101 (1990).Google Scholar
[2] Tersoff, J., Phys. Rev. B, 43, 9377 (1991).Google Scholar
[3] Keating, P.N., Phys. Rev. 145, 637 (1966).Google Scholar
[4] Srolovitz, D.J., Acta Metall. 37, 621 (189).Google Scholar
[5] Spencer, B.J., Voorhees, P.W., and Davis, S.H., Phys. Rev. Lett. 67, 3696 (1991).Google Scholar
[6] Copel, M., Reuter, M.C., Kaxiras, E., and Tromp, R.M., Phys. Rev. Lett. 63, 632 (1989).CrossRefGoogle Scholar
[7] Hoegen, M. Horn-von, LeGoues, F.K., Copel, M., Reuter, M.C., and Tromp, R.M., Phys. Rev. Lett. 67 1130 (1991).CrossRefGoogle Scholar
[8] Eaglesham, D.J. and Cerullo, M., Appl. Phys. Lett. 58, 2276 (1991).Google Scholar
[9] Choi, C.-H., Hultman, L., and Barnett, S.A., J. Vac. Sci. Technol. A, 8, 1587 (1990).Google Scholar
[10] Choi, C.-H., Ai, R., and Barnett, S.A., Phys. Rev. Lett. 67, 2826 (1991).Google Scholar
[11] Hasan, M-A., Knall, J., Barnett, S.A., Rockett, A., Sundgren, J.-E., and Greene, J.E., J. Vac. Sci. Technol. A, 5, 1883 (1987).Google Scholar
[12] Nikzad, S. and Atwater, H.A., Mat. Res. Soc. Symp. Proc. 223, 53 (1991).CrossRefGoogle Scholar
[13] Andersen, H.H. and Bay, H.L., in Sputtering by Particle Bombardment I, edited by Behrisch, R., (Springer-Verlag Berlin Heidelberg, 1981),p.145.Google Scholar
[14] Tsai, C.J., Atwater, H.A., and Vreeland, T., Appl. Phys. Lett. 57, 2305 (1990).Google Scholar
[15] Crook, G.E., Daweritz, L., and Ploog, K., Phys. Rev. B, 42, 5126 (1990).Google Scholar