Skip to main content Accessibility help
×
Home

Superlubricity and Wearless Sliding in Diamondlike Carbon Films

  • Ali Erdemir (a1)

Abstract

Diamondlike carbon (DLC) films have attracted great interest in recent years mainly because of their unusual optical, electrical, mechanical, and tribological properties. Such properties are currently being exploited for a wide range of engineering applications including magnetic hard disks, gears, sliding and roller bearings, scratch resistant glasses, biomedical implants, etc. Systematic studies on carbon-based materials in our laboratory have led to the development of a new class of amorphous DLC films that provide extremely low friction and wear coefficients of 0.001 to 0.005 and 10-11 to 10-10 mm3/N.m, respectively, when tested in inert-gas or high-vacuum environments. These films were produced in highly hydrogenated gas discharge plasmas by a plasma enhanced chemical vapor deposition process at room temperature. The carbon source gases used in the deposition of these films included methane, acetylene, and ethylene. Tribological studies in our laboratory have established a very close correlation between the composition of the plasmas and the friction and wear coefficients of the resultant DLC films. Specifically, the friction and wear coefficients of DLC films grown in plasmas with higher hydrogen-to-carbon ratios were much lower than films derived from source gases with lower hydrogen-to-carbon ratios. Fundamental tribological and surface analytical studies have led us to conclude that hydrogen (within the film, as well as on the sliding surfaces) is extremely important for the superlubricity and wearless sliding behavior of these films. Based on these studies, a mechanistic model is proposed to explain the superlow friction and wear properties of the new DLC films.

Copyright

References

Hide All
1. Erdemir, A. and Donnet, C., in Modern Tribology Handbook, edited by Bhushan, B., (CRC Press, Boca Raton, FL, 2000), p. 871.
2. Erdemir, A., in Modern Tribology Handbook, edited by Bhushan, B., (CRC Press, Boca Raton, FL, 2000), p. 787.
3. Savage, R. H., J. Appl. Phys., 19, 1 (1948).
4. Fusaro, R. L. and Sliney, H. E., ASLE Trans., 13, 56 (1970).
5. Erdemir, A., Fenske, G., and Busch, D., United States Patent # 6,255,234: Ultralow friction carbon composites for extreme temperature applications, 2001.
6. Bhushan, B., Gupta, B. K., Cleef, G. W. Van, Capp, C., and Coe, J. V., Appl. Phys. Lett., 62, 3253 (1993).
7. Falvo, M. R., Taylor, R. M., Helser, A., Chi, V., Brooks, F. P., Washburn, S., and Superfine, R., Nature, 397, 236 (1999).
8. Erdemir, A., Switala, M., Wei, R., and Wilbur, P., Surf. Coat. Technol., 50, 17(1991).
9. Erdemir, A., Nichols, F. A., Pan, X. Z., Wei, R., and Wilbur, P., Diam. Rel. Mater., 3, 119 (1993).
10. Erdemir, A., Bindal, C., Fenske, G. R., Wilbur, P., Tribol. Trans., 39 735 (1996).
11. Erdemir, A., Fenske, G. R., Krauss, A., Gruen, D., McCauley, T., and Csencsits, R., Surf. Coat. Technol., 121, 565 (1999).
12. Erdemir, A., Nilufer, I. B., Eryilmaz, O. L., Beschliesser, M., and Fenske, G. R., Surf. Coat. Technol., 121, 589 (1999).
13. Ersoy, D. A., McNallan, M. J., Gogotsi, Y., and Erdemir, A., Tribol. Trans., 43, 809 (2000).
14. Erdemir, A., Eryilmaz, O. L., Nilufer, I. B., and Fenske, G. R., Diam. Rel. Mater., 9, 632 (2000).
15. Erdemir, A., Eryilmaz, O. L., and Fenske, G., J. Vac. Sci. Technol., A18 1987 (2000).
16. Erdemir, A., Proc. the 44th Annual Meeting of the Society of Vacuum Coaters, Philadelphia, PA, SVC Publications, Albuquerque, NM 2001, p. 397.
17. Hayward, I. P., Singer, I. L., and Seitzman, L. E., Wear, 157 215 (1992).
18. Gupta, B. K., Malshe, A., Bhushan, B., and Subramaniam, V. V., J. Tribol., 116, 445 (1994).
19. Erdemir, A., Halter, M., Fenske, G. R., Krauss, A., Gruen, D. M., Pimenov, S. M., and Konov, V. I., Surf. Coat. Technol., 94–96, 537 (1997).
20. Gardos, M. N. and Soriano, B. L., J. Mater. Res., 5, 2599 (1990).
21. Bowden, F. P. and Young, J. E., Proc. Roy. Soc. London, A208, 444455 (1951).
22. Tabor, D.: Adhesion and Friction, in The Properties of Diamond, ed. Field, J. E., (Academic Press, 1979), p. 325.
23. Miyoshi, K., J. Appl. Phys., 74, 4446 (1993).
24. Gardos, M. N., Surf. Coat. Technol., 113, 183 (1999).
25. Dugger, D., Peebles, E., and Pope, L. E., (1992), in Surface Science Investigations in Tribology, Experimental Approaches, Edited by Chung, Y.-W., Homolo, A. M., and Street, G. B., ACS Symposium Series: 485, (American Chemical Society, Washington D.C, 1992), pp. 72102.
26. Chandrasekar, S., and Bhushan, B., Wear, 153, 7989 (1992).
27. Donnet, C. and Grill, A., Surf. Coat. Technol., 94/95 456 (1997).
28. Heimberg, J. A., Wahl, K. J., Singer, I. L., and Erdemir, A., Appl. Phys. Lett., 78, 2449 (2001).
29. Ronkainen, H., Koskinen, J., Likonen, J., Varjus, S., and Vihersalo, J., Diam. Rel. Mater. 3, 1329 (1993).
30. Miyoshi, K., Pouch, J. J., and Alterovitz, S. A., Mater. Sci. Forum, 52/53, 645 (1989).
31. Liu, Y., Erdemir, A., and Meletis, E. I., Surf. Coat. Technol. 82, 48 (1996).
32. Liu, Y., Erdemir, A., and Meletis, E. I., Surf. Coat. Technol., 94–95, 463 (1997).
33. Kim, D. S., Fischer, T. E., and Gallois, B., Surf. Coat. Technol., 49, 537(1991).
34. Olsen, J. E., Fischer, T. E., and Gallois, B., Wear, 200 233 (1996).
35. Donnet, C., Belin, M., Martin, J. C., Martin, J. M., Grill, A., and Patel, V., Surf. Coat. Technol., 68–69, 626 (1994).

Superlubricity and Wearless Sliding in Diamondlike Carbon Films

  • Ali Erdemir (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.