Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-02T00:09:48.398Z Has data issue: false hasContentIssue false

Supercritical Fluids as New Reaction Media to Synthesize Nanostructured Materials

Published online by Cambridge University Press:  10 February 2011

Cyril Aymonier
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 avenue du Dr. Albert Schweitzer, 33608 PESSAC Cedex, France
Sophie Desmoulins-Krawiec
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 avenue du Dr. Albert Schweitzer, 33608 PESSAC Cedex, France
Anne Loppinet-Serani
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 avenue du Dr. Albert Schweitzer, 33608 PESSAC Cedex, France
François Weill
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 avenue du Dr. Albert Schweitzer, 33608 PESSAC Cedex, France
François Cansell
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 avenue du Dr. Albert Schweitzer, 33608 PESSAC Cedex, France
Get access

Abstract

Supercritical fluids exhibit a range of unusual properties that can be exploited for the development of new reactions for material synthesis. These reactions are different from those performed in classical solid-state chemistry. Supercritical fluids are interesting as reaction media for the synthesis of nanostructured materials because fluid properties such as density, viscosity, diffusivity and solubility of reagents can be continuously tuned from gas to liquid with small variations in pressure and temperature. Moreover, supercritical fluid processing offers the possibility of using solvents with low toxicity that result in nanostructured materials free of solvent contamination. The process developed at ICMCB obtains nanostructured materials by chemically transforming a metal precursor inside a supercritical fluid. The synthesis of nanostructured materials such as metals, oxides or nitrides is possible at lower temperatures than the classic solid-state chemistry route. Based on experimental results and simulations, the nanostructured material nature, size and morphology can be continuously adjusted as a function of the operating condutions. Our process provides a great contribution in the development of self-assembled nanostructured materials by controlling the chemical composition, size, morphology and the surface properties of nanobricks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cansell, F., Rey, S., Beslin, P., Revue de l'Institut Français du Pétrole, 53, 71(1998)Google Scholar
2. Innovations in Supercritical Fluids, ed. Hutchenson, K.W. and Foster, N.R., ACS Symp. Ser. 608, Washington DC, 1995.Google Scholar
3. Jung, J., and Perrut, M., J. Supercrit. Fluids, 20, 179(2001)Google Scholar
4. Cansell, F., Chevalier, B., Demourgues, A., Etourneau, J., Even, C., Garrabos, Y., Pessey, V., Petit, S., Tressaud, A., and Weill, F., J. Mat. Chem., 9, 67(1999)Google Scholar
5. Pessey, V., Garriga, R., Weill, F., Chevalier, B., Etourneau, J., and Cansell, F., J. Mat. Chem., 12, 958(2002)Google Scholar
6. Garriga, R., Pessey, V., Weill, F., Chevalier, B., Etourneau, J., and Cansell, F., J. Supercrit. Fluids, 20, 55(2001)Google Scholar
7. Pessey, V., Garriga, R., Weill, F., Chevalier, B., Etourneau, J., and Cansell, F., High Pres. Res., 20, 289(2001)Google Scholar
8. Desmoulins-Krawiec, S., Aymonier, C., Loppinet-Serani, A., Weill, F., Etourneau, J. and Cansell, F., J. Mat. Chem., (in press).Google Scholar