Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T00:16:32.793Z Has data issue: false hasContentIssue false

Superconductivity, Superstructure, and Structure Anomalies in Mg1-XAlxB2

Published online by Cambridge University Press:  18 March 2011

J. Q. Li
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China
L. Li
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China Department of Physics, Ningxia University, Yinchuan, Ningxia 750021, P.R. China.
F. M. Liu
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China Center for Material Physics and Chemistry, Beijing University of Aeronautics & Astronautics, Beijing 100083, P. R. China.
C. Dong
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China
J. Y. Xiang
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China
Z. X. Zhao
Affiliation:
National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P. R. China
Get access

Abstract

The presence of a superstructure is identified to play a key role for the modifications in both superconductivity and structure transitions in the Mg1-xAlxB2 system. This superstructure occurs along the c-axis direction, and can be well interpreted by Al-layer ordering. The optimal composition of the superstructure phase is MgAlB4, a superconductor with Tc ∼12K. Raman spectrum of MgAlB4 gives rise to a sharp peak at around 941cm−1. Brief diagrams illustrating the superconductivity and structural features of Mg1-xAlxB2 (0≤x≤1) materials are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature 410, 63 (2001).Google Scholar
2. Bud'ko, S. L., lapertot, G., and Petrovic, C., Phys. Rev. Lett. 86, 1877 (2001).Google Scholar
3. Slusky, J. S., Rogado, N., Regan, K.A., Hayward, M.A., Khalifah, P., He, T., Inumaru, K., Loureiro, S., Haas, M.K., Zandbergen, H. W., and Cava, R.J., Nature 410, 343(2001).Google Scholar
4. Goncharov, Alexander F. et al. Cond-mat/0104042 v2(2001).Google Scholar
5. Li, J.Q. et al, Chin. Phys. Lett. 18, 680 (2001).Google Scholar
6. Canfield, P. C., et al. Phys. Rev. Lett. 86, 2423 (2001).Google Scholar
7. An, J. M., and Pickett, W. E., Cond-mat/0102391 (2001)Google Scholar
8. Xiang, J. Y. et al, Phys. Rev. B (submitted)Google Scholar
9. Chen, X. K. et al, Cond-mat/0104005 (2001); K.-P. Bohen, R. Heid, and B. Renker (condmat/ 0102468).Google Scholar
10. Goncharov, A. F., et al. Cond-mat/0104042 (2001).Google Scholar
11. Liu, F. M., Liu, Y.L., et al (in preparation).Google Scholar
12. Cava, J., et al, Nature 329, 423 (1987).Google Scholar
13. Suzuki, S., Higai, S., and Nakao, K., J. Phys. Soc. Jpn. (2001), (Submitted)Google Scholar