Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T22:43:09.879Z Has data issue: false hasContentIssue false

Suitability of Natural Geomedia for Radwaste Storage

Published online by Cambridge University Press:  21 February 2011

W. S. Fyfe*
Affiliation:
Department of Geology, University of Western Ontario, London, Ontario, Canada. N6A 5B7
Get access

Abstract

Selection of the best rock types for radwaste disposal will depend on their having minimal permeability, maximal flow dispersion, minimal chance of forming new wide aperture fractures, maximal ion retention, and minimal thermal and mining disturbance. While no rock is perfect, thinly bedded complex sedimentary sequences may have good properties, either as repository rocks, or as cover to a repository.

Long time prediction of such favorable properties of a rock at a given site may be best modelled from studies of in situ rock properties. Fracture flow, dispersion history, and geological stability can be derived from direct observations of rocks themselves, and can provide the parameters needed for convincing demonstration of repository security for appropriate times.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gabor, D. et al. , Beyond the Age of Waste (Pergamon, New York 1978) 237 pp.Google Scholar
2. Fyfe, W. S., Science, 213, 105 (1981).CrossRefGoogle Scholar
3. Freeze, R. A. and Cherry, J. A., Groundwater (Prentice-Hall Inc., New Jersey 1979) 604 pp.Google Scholar
4. Chilingar, G. V., Proc. Itern. Sedimentol. Cong. Amsterdam (1963).Google Scholar
5. Fyfe, W.S. et al. , Fluids in the Earth's Crust (Elsevier, Amsterdam 1978) 383 pp.Google Scholar
6. Bell, J. S. and Gough, D. I. in: Evolution of the Earth, R. J.O'Connell and Fyfe, W.S. eds. (American Geophysical Union Geodynamics Series vol. 5, 1981) 96–104.CrossRefGoogle Scholar
7. Price, N.J., Geosci. Can. 6, 209 (1979).Google Scholar
8. Mair, J. A. and Green, A. G., Nature 294, 439 (1981).CrossRefGoogle Scholar
9. Brotzen, O., SKBF, KBS Teknisk Rapport, 81–16, 1980.Google Scholar
10. Bear, J., Dynamics Of Fluids In Porous Media (American Elsevier, New York 1972) 764 pp.Google Scholar
11. Wadden, M. M. and Katsube, T. J., Chem. Geol. 36, 191 (1982).CrossRefGoogle Scholar
12. Fyfe, W. S. and Lonsdale, P. in: The Sea, v. 7, Emiliani, C. ed. (John Wiley and Sons, New York 1981) 589638.Google Scholar
13. Kronberg, B. I. et al. , Chem. Geol. 24, 211 (1978).CrossRefGoogle Scholar
14. Ramsay, J. G., Nature 284, 135 (1980).CrossRefGoogle Scholar
15. Fyfe, W. S., Phil. Trans. R. Soc. London, Ser. A., 283, 221 (1976).Google Scholar
16. Wang, J. S. Y. et al. , J. Geophys. Res. 86, 3759 (1981).CrossRefGoogle Scholar
17. Tuzaki, K., J. Clay Sci. Soc. Japan 20, 83 (1980).Google Scholar
18. Bredehoeft, J. D. and Maini, T., Science 213, 291 (1981).CrossRefGoogle Scholar
19. Hollister, C.D. et al. , Science, 213, 1321 (1981).CrossRefGoogle Scholar