Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-01T14:54:54.407Z Has data issue: false hasContentIssue false

Submicrometer-Linewidth Laser Doping*

Published online by Cambridge University Press:  15 February 2011

J. Y. Tsao
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
D. J. Ehrlich
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
Get access

Abstract

Dopant patterns of 250-nm linewidth have been written in silicon by localized heating with a cw laser beam, and then transferred into positive and negative surface-relief patterns by preferential etching. The tightly focused beam both generates free dopant atoms and simultaneously promotes solidstate diffusion into the substrate. Because of the nonlinear dependence of diffusion rates on temperature, the linewidths of the patterns are substantially narrower than those of both the temperature and the laser-beam profiles on tile surface. In addition, an enhancement is observed in diffusion rates under the strong thermal gradients associated with highly localized heating.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by the Defense Advanced. Research Projects Agency, the, Department of the Air Force, in part under a specific program sponsored by the, Air Force Office of Scientific Research, and by the Army Research Office.

References

REFERENCES

1. Ehrlich, D. J. and Tsao, J. Y., Appl. Phys. Lett. 41, 297 (1982).CrossRefGoogle Scholar
2. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 38, 1018 (1981).Google Scholar
3. Kuhn, G. L. and Rhee, C. J., J. Electrochem. Soc. 120, 1563 (1973).Google Scholar
4. Asano, M., Cho, T. and Muraoka, H., Electrochem. Soc. Extended Abstracts 76–2 911 (1976).Google Scholar
5. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 39, 957 (1981).Google Scholar
6. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 36, 916 (1980).CrossRefGoogle Scholar
7. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 38, 399 (1980).Google Scholar
8. Lax, M., J. Appl. Phys. 48, 3919 (1977);Google Scholar
8a and Lax, M., in Laser-Solid Interactions and Laser Processing, edited by Ferris, S. D., Leamy, H. J. and Poate, J. M. (Amer. Inst. of Phys., New York, 1979).Google Scholar
9. Nissim, Y. I., Lietoila, A., Gold, R. B. and Gibbons, J. F., J. Appl. Phys. 51, 274 (1980).CrossRefGoogle Scholar
10. Shewmon, P. G., Diffusion in Solids (McGraw Hill, New York, 1963);Google Scholar
10a see also Shaw, D., Ed., Atomic Diffusion in Semiconductors (Plenum Press, London, 1973).Google Scholar
11. Lehovec, K. and Slobodsky, A., Solid-State Electron. 3, 45 (1961).CrossRefGoogle Scholar
12. Dona Dalle Rose, L. F. and Miotella, A., in Laser and Electron-Beam Interactions with Solids, edited by Appleton, B. R. and Celler, G. K. (North-Holland, Amsterdam, 1982), pp. 425430.Google Scholar
13. Van Vechten, J. A., Phys. Rev. B 10, 1482 (1974).Google Scholar
14. Hu, S. M., J. Appl. Phys. 45, 1567 (1974).Google Scholar
15. Lin, A. M., Dutton, R. W., and Antoniadis, D. A., Appl. Phys. Lett. 35, 799 (1979).CrossRefGoogle Scholar
16. Patel, J. R. and Chandhuri, A. R., J. Appl. Phys. 34, 2788 (1963).Google Scholar
17. Lawrence, J. E., Brit. J. Appl. Phys. 18, 405 (1967).Google Scholar
18. Tranmanesh, A. A. and Pease, R. F. W., paper presented at the Electrochem. Soc. Meeting, Montreal, Quebec, Canada (May 9–14, 1982).Google Scholar