Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-10T11:22:58.075Z Has data issue: false hasContentIssue false

Study on the Perovskite-type Oxide Cathodes in Proton-conducting SOFC

Published online by Cambridge University Press:  26 February 2011

Hidenori Yahiro
Affiliation:
hyahiro@eng.ehime-u.ac.jp, Graduate School of Science and Engineering, Ehime University, Department of Materials Science and Biotechnology, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan, +81-89-927-9929, +81-89-927-9946
Hiroyuki Yamaura
Affiliation:
yamaura@eng.ehime-u.ac.jp, Graduate School of Science and Engineering, Ehime University, Department of Materials Science and Biotechnology, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan
Makiko Asamoto
Affiliation:
macky_0526@hotmail.com, Graduate School of Science and Engineering, Ehime University, Department of Materials Science and Biotechnology, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan
Get access

Abstract

The cathode performances of perovskite-type oxide electrodes were investigated in the H2-O2 fuel cell with proton-conducting electrolyte. Among the perovskite-type oxides tested in the present study, La1-xSrxFeO3(LSFO) showed the best cathode performance. The cathode performances of LSFO depended on the Sr content and the heat-treatment temperature prior to electrochemical measurements. The cathode reactions of both LSFO and Pt electrodes are discussed briefly based on the cathode overpotentials measured as a function of oxygen partial pressure. Finally, the structure and the electrical conductivity of the proton-conducting ceramic film fabricated on LSFO electrode substrate are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iwahara, H., Esaka, T., Uchida, H., and Maeda, N., Solid State Ionics 3/4, 359 (1981).Google Scholar
2. Liu, J. F. and Bowick, A. S., Solid State Ionics 50, 131 (1992).Google Scholar
3. Iwahara, H., Uchida, H., Ono, K., and Ogaki, K., J. Electrochem. Soc. 135, 529 (1988).Google Scholar
4. Kurita, N., Otsuka, K., Fukatsu, N., and Ohnishi, T., Solid State Ionics 79, 358 (1995).Google Scholar
5. Kosaki, I. and Anderson, H. U., Appl. Phys. Lett. 69, 4171 (1996).Google Scholar
6. Iwahara, H., Solid State Ionics 77, 289 (1995).Google Scholar
7. Iwahara, H., Solid State Ionics 125, 271 (1999).Google Scholar
8. Hamakawa, S., Hibino, T., and Iwahara, H., J. Electrochem. Soc. 141, 1720 (1994).Google Scholar
9. Chiang, P. H., Eng, D., and Stoukides, M., Solid State Ionics 61, 99 (1993).Google Scholar
10. Iwahara, H., Uchida, H., and Maeda, M., J. Power Sources 7, 283 (1982).Google Scholar
11. Iwahara, H., Uchida, H., and Tanaka, S., Solid State Ionics 9/10, 1021 (1983).Google Scholar
12. Iwahara, H., Yajima, T., Hibino, T., and Ushida, H., J. Electrochem. Soc. 140, 1687 (1993).Google Scholar
13. Bonanos, N., Ellis, B. and Mahmood, M. N., Solid State Ionics 44, 305 (1991).Google Scholar
14. Coors, W. G., J. Power Sources 118, 150 (2003).Google Scholar
15. Kosacki, I. and Tuller, H. L., Solid State Ionics 80, 223 (1995).Google Scholar
16. Bonanos, N., Solid State Ionics 53–56, 967 (1992).Google Scholar
17. Uchida, H., Tanaka, S., and Iwahara, H., J. Appl. Electrochem. 15, 93 (1985).Google Scholar
18. Minh, N. Q., J. Am. Ceram. Soc. 76, 563 (1993).Google Scholar
19. Singhal, S. C., Solid State Ionics 135, 305 (2003).Google Scholar
20. Ohno, Y., Nagata, S., and Sato, H., Solid State Ionics 3–4, 439 (1981).Google Scholar
21. Yamamoto, O., Takeda, Y., Kanno, R., Noda, M., Solid State Ionics 22, 241 (1987).Google Scholar
22. Uchida, H., Arisaka, S., and Watanabe, M., Solid State Ionics 135, 347 (2000).Google Scholar
23. Simner, S. P., Bonnett, J. F., Canfield, N. L., Meinhardt, K. D., Sprenkle, V. L., and Stevenson, J. W., Electrochem. Solid State Lett. 5, A173 (2002).Google Scholar
24. Simner, S. P., Shelton, J. P., Anderson, M. D., Stevenson, J. W., Solid State Ionics 161, 11 (2003).Google Scholar
25. Anderson, M. D., Stevenson, J. W., and Simner, S. P., J. Power Sources 129, 188 (2004).Google Scholar
26. Badwal, S. P. S., Jiang, S. P., Love, J., Nowotny, J., Rekas, M., and Vance, E. R., Ceram. International 27, 419 (2001).Google Scholar
27. Yahiro, H., Eguchi, K., and Arai, H., Solid State Ionics 21, 37 (1986).Google Scholar
28. Takeda, Y., Kanno, R., Noda, M., Tomida, Y., and Yamamoto, O., J. Electrochem. Soc. 134, 2657 (1987).Google Scholar
29. Fiqueiredo, F. M., Labrincha, J. A., Frade, J. R., and Marques, F. M. B., Solid State Ionics 101–103, 343 (1997).Google Scholar
30. Wang, D. Y. and Nowick, A. S., J. Electrochem. Soc. 126, 1155 (1979).Google Scholar
31. Estell, T. H. and Frengas, S. N., J. Electrochem. Soc. 118, 1890 (1971).Google Scholar
32. Pan, M., Meng, G. Y., Chen, C. S., Peng, D. K., and Lin, Y. S., Mater. Lett. 36, 44 (1998).Google Scholar
33. Kosacki, I. and Anderson, H. U., Solid State Ionics, 97, 429 (1997).Google Scholar
34. Hamakawa, S., Li, L., Li, A., and Iglesia, E., Solid State Ionics 48, 71 (2002).Google Scholar